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Abstract. Exact algorithms for the kinetic analysis of Key words: Channel interaction — Dwell-time histo-
multichannel patch-clamp records require hours to daygrams — Markov process — Rate constants — Target-fit
for a single record. Thus, it may be reasonable to use a

fast but less accurate method for the analysis of all data

sets and to use the results for a reanalysis of some séatroduction

lected records with more sophisticated approaches. For

the first run, the tools of single-channel analysis wereChannels in biological membranes are mostly described
used for the evaluation of the single-channel rate conby aggregated Markov processes (Colquhoun & Hawkes,
stants from multichannel dwell-time histograms. This1977, 1981, 1982, 1987, 1990, 1995; Korn & Horn,
could be achieved by presenting an ensemble of singl@988; Neher & Stevens, 1977; Yeo et al., 1988; Ball &
channels by a “macrochannel” comprising all possible Rice, 1992). This means that the gating behavior of a
states of the ensemble of channels. Equations for thehannel is described by spontaneous jumps between dis:
calculations of the elements of the macrochannel transierete states, which may differ in their conductance. The
tion matrix and for the steady-state concentrations foraim of a kinetic analysis is to evaluate the arrangement of
individual states are given. Simulations of multichannelthe states and the transition rates.

records with 1 to 8 channels with two closed and one A minority of workers make use of the deviations
open states and with 2 channels with two open and twdrom Gaussian distributions in amplitude distributions by
closed states were done in order to investigate undedin analysis based on beta distributions (FitzHugh, 1983;
which conditions the one-dimensional dwell-time analy-Yellen 1984; Klieber & Gradmann, 1993).

sis itself already provides reliable results. Distributions ~ The majority prefers the analysis of the measured
of the evaluated single-channel rate constants show thaé¢mporal behavior of the patch clamp current, and a great
a bias of the estimations of the single-channel rate convariety of methods is employed. Some algorithms deal
stants of 10 to 20% has to be accepted. The comparisowith each data point of the time series, others make use
of simulations with signal-to-noise ratios of SNR 1 or  of pre-averaged data that enter the calculations as one- o
SNR = 25 demonstrates that the major problem is nottwo-dimensional dwell-time distributions. Dwell-time
the convergence of the fitting routine, but failures of thedistributions give the probability that a given duration of
level detector algorithm which creates the dwell-timesa sojourn in a certain state will be observed. If the prob-
distributions from noisy time series. ability distribution of the length of these sojourns is de-

The macrochannel presentation allows the incorpopendent on the dwell-time in the preceding state(s),
ration of constraints like channel interaction. The evalu-higher-dimensional dwell-time distributions are used.
ation of simulated 4-channel records in which the rate-Another difference between approaches is in their capa-
constant of opening increased by 20% per already opebility to account for the effects of missed events and
channel could reveal the interaction factor. noise.

Another feature which renders the evaluation of
single-channel rate constants from dwell-times difficult
is the fact that channels often occur in clusters. This
aggregation is probably brought about by binding to
Abbreviationsp.d.f. = probability density function of the durations of Membrane-associated guanylate kinases, as shown b
sojourns at the conductance level. Kim et al. (1995) for Shaker-type Kchannels. The in-
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volvement of the cytoskeleton is also indicated by therelated to a certain level. Secondly, noise is accounted
observation that single-channel records can be obtainefr because the width of the partial amplitude histograms
if cytochalasin is given which makes the channels spreadetermines the probability that the measured current is
(Pongs,personal communicatign This cluster forma- related to the predicted state. Furthermore, filtering can
tion may be the origin of rarely observed channel inter-be included by splitting multistate multichannel beta dis-
action (Yeramian, Trautman & Claverie, 1986; Manivan- tributions into partial amplitude histograms (FitzHugh,
nan et al., 1992; Draber, Schultze & Hansen, 1993; Liu1983; Yellen, 1984). The algorithms for multistate mul-

& Dilger, 1993). tichannel histograms have been furnished by Riessner
The majority of tools for the evaluation of patch- (1994).
clamp data is tailored for single-channel dwell-time dis- However, the prediction of the time series and the

tributions (Ball & Sansom 1989; McManus and simulation of two-dimensional dwell-time distributions
Magleby, 1989; Magleby & Weiss 198(b; Ball, Milne  yequire computer time which ranges from several hours
& Yeo, 1993; Colquhoun, Hawkes & Srodzinski, 1996). 1o several days (Magleby & Weiss 1990Albertsen &

Itis difficult to interpret the data obtained from the fits of 55en 1994) for just one patch-clamp record. The
multichannel records in terms of single-channel paramy oblem of computer time seemed to be overcome by

eters. Thus, the analysis of the kinetics of gating is ofterbin, Aucherbach and Sachs (1996) who used the recon-

restricted to: structed time series for the prediction algorithm. How-
ever, here again a jump detector had to be employed, anc
— single-channel records or multichannel recordsthe missed-events correction was based on a multichan-
with sections of only one active channel; nel extension of the approach of Roux and Sa{(h885)
— fast flickering (Draber et al., 1993); which does not account for the memory of the detector
— evaluation only of the states “all channels open” (filtering).
or “all channels closed” thus using the dwell-time his- The required computer time may become a problem
tograms with the smallest number of events and a lowf great amounts of data have to be analyzed. An ex-
statistical significance. ample that illustrates the need of a faster approach is the
study of the fast-blocking effects of metal ions on the K
echannel inChara (Draber & Hansen, 1994; Hansen,

The restriction to single-channel records leads to th K lunck ith i £
rejection of many experiments. However, there are pow-Keunec e & Blunck, 1997) with a sampling rate of 200

erful approaches for multichannel analysis, e.g., the dikHz: 2 million data points are stored on disk every 10
rect fit of the time series. The required computer timeS€¢: Most of the records include more than one channel.
could be limited to hours or days by using a one-step _ Secondly, besides the extreme computer time re-
prediction algorithm. The approach of Horn and Langeduired by the direct fit of the original time series, there is
(1983) was already a multichannel analysis, which wagnother problem that may be considered to be just of
based on recursive one-step prediction of the composiPsychological origin, but many workers will feel that this
tion of open states. A missed-events correction was iniS important: the investigator has to rely completely on
troduced later. It was approximate (Sine, Claudio & Sig-the computer algorithm because the whole analysis of the
worth, 1990) or exact (Colquhoun et al., 1996), but indirect fit occurs “in a long dark tunnel.” The investi-
both cases it was restricted to single-channel analysigator starts the fitting routine and gets just a handful of
with a constant dead time which ignores the effects oftumbers (4 to 10 rate constarks) at the end of the
noise and of the memory of the detector (Magleby & tunnel after 1 to 10@r. There is no visual control of the
Weiss, 1998). progress of the fitting process. In the case of dwell-time
The potential for implementing all desirable options distributions, there are diagrams with clouds of data
is provided by the method of Fredkin and Rice (1992)points with more or less pronounced curvature, and the
which was extended to multichannel analysis by Albert-computer draws lines through these clouds. Then, the
sen and Hansen (1994) and Klein, Timmer andresearcher can judge by eye whether this fit is convincing
Honerkamp (1997). Here, also the states of the involvedr not, and weighting factors may be employed to im-
channels are predicted. However, in contrast to the approve the fit.
proach of Horn and Lange (1983) the calculation of the  The above reasons, but also the widespread use of
likelihood is not based on the probability that the pre-dwell-time distributions (Colquhoun & Hawkes, 1995)
dicted state does occur, but that the measured current céded to the desire of a multichannel fit of dwell-time dis-
be assigned to the predicted state. This provides twdributions. The requirement of computer time can be re-
benefits: Firstly, a jump detector is avoided. Level de-duced if a lower degree of sophistication is accepted.
tection is still employed as the overall amplitude histo- The price that has to be paid for higher speed is as
gram has to be split into partial amplitude distributionsfollows: Firstly, the analysis of one-dimensional dwell-
that provide the probability that a measured current igime distributions ignores the information comprised
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in internal correlation (Fredkin, Montal & Rice, 1985). do not add additional time constants (phantom exponen-
This can be obtained from joint distributions of apparenttials: Blatz & Magleby, 1986; Yeo et al. 1988) if that part
open and closed times, which describe the dependenad the dwell-time histogram with < 3 dead timesy is
of an observed dwell-time in state B on the precedingomitted. This is mainly the first (which is increasing
time in state A (Colquhoun & Hawkes, 1987; Blatz because of missed events) part of the dwell-time distri-
& Magleby, 1989; Weiss & Magleby, 1989; Magleby & butions (McManus & Magleby, 1989; Colquhoun et al.,
Weiss 199@,b; Colquhoun et al., 1996; Rothberg, Bello 1996). The effects of missed events can be handled by
& Magleby, 1997). Magleby and Song (1992) have an asymptotic form of the exact equations including the
shown that Markov models which led to the samesurvivor function in the range of 34 <t < 20 14
maximum likelihood on the basis of one-dimensional (Colquhoun et al., 1996). Fourthly, there is hope (Mc-
dwell-time distributions could clearly be distinguished Manus & Magleby, 1989) that the error by ignoring
by means of two-dimensional dwell-time distributions. Missed events results in a parallel shift by apparent rate
This reduces the class of indistinguishable models, evefOnstants obtained under the influence of different
though it has to be kept in mind that already simpleag_e”ts- Thus, the effect of an agent can still be charac-
models may not be distinguished by means of their ki-terized. _ _
netics (Kienker, 1989). The two-dimensional presenta-.  B€cause only an incomplete missed-events correc-
tion is also useful to check the reversibility of the un- ion could be incorporated into the analysis of pre-
derlying process (Song & Magleby, 1994). averaged data (dwell-time dlstr!b_utlons), researchers
Secondly, more serious is the neglect of the missedMay look for a dual strategy for fitting the data: A fast

events problem (Roux & Sauvd85; Blatz & Magleby, and simplle '.’“eth"d for th? analysis of :.i” datg and a s_Iow
1986: Yeo et al., 1988: Ball & Sansom, 1989 Hawkes etanq sophisticated analysis (e.g., the fjlrec.t fit of the time
al, 1990, 1992; Colquhoun et al. 1096). This may bee "3 B TER0 B Bl 0 SaR 2
regarded as a major disadvantage because a retrospect& 3 rough data of the first run PP
correction as provided for single-channel records i

(Crouzy & Sigworth 1990; Draber & Schultze, 1994) is . i?cr) ng‘z ;'t:f)f,]rg][‘thaatmo‘ﬂ‘l’lf’rn'z Z‘r’%gﬁjlfg Tig‘yh'd‘
not available for multichannel multistate records. '

The restriction of the fitting routine to one- which was based on the assumption of identical chan-
. ; ) o nels. The new approach is based on a “macrochannel”
dimensional dwell-time distributions does not necessarbresentation (Colquhoun & Hawkes 1977, 1990), and it
lly lead to a loss Of, information if the experiments have makes use of a target fit. The search rout,ine in a,target-
produced some single-channel records. They can Dg; ohiimizes those parameters which are the “target” of
used for the construction of two-dimensional dwell-time \he gnalysis: here, the rate constants of the transitions in
distributions (Magleby & Weiss, 199(b; Magleby & 5 \arkov model. The target fit has several advantages
Song, 1992; Colquhoun et al., 1996), from which theyer the widely used fit with time constants (Colquhoun
model for the subsequent fitting of the multichannel one-g sigworth, 1983). At first, the calculation of the rate
dimensional dwell-time distributions can be obtained. constants from the set of time constants and amplitude
~ Missed-events corrections could be included by ustactors is very complicated even though the situation is
ing the survivor function R (Ball & Sansom, 1989; improved by the algorithms suggested by Jackson
Hawkes et al., 1990, 1992; COquhOUn et al., 1996)(1997) Other benefits of this approach are:
However, it is questionable whether the gain of accuracy o . ) .
is worth the considerable loss of speed. Firstly, as stated — the a@pplication to ensembles with nonidentical
by Magleby and Weiss (199 “the matrix methods ~Clannels including sublevels;
disregard the effects of noise and make unrealistic (idel—evel_sgglnogarl]:&tt'iréghg:\:]he? ?gg:ilrlt_jtlvrci?hdtlﬁglts);tlr:gsd;ct);as”et'
alized) assumptions about the effects of filtering.” Fil- _ global fitting of different experiments: the inves-’
iegglg éLnde:](;)i?{a ?lf/légleelfyef\:}\gi. SE;@%; rf]L a)S/%haLcéze'tigation of the effects of an agent on a certain rate-
effects that exceed that of a detector with constant deaoc-%nStaEt g_e]:tls more dpowerful wkhen all ra':g-consgants be-.
time (Colquhoun & Hawkes 1990). Thus, the inclusion S| ei :hg Isri]mu?(re]r(:ﬁ\clars]i%snaorfcoigttril?:tz 'g a a?:t:r;?rg&
of the survivor function does not account for all aspectscou lin betV\E)een rate constants as ive,n i.r?.'éhe case of
of the missed-events problem. Secondly, there is the op= P gt' ity (Draber et al. 1993 K'g &N 1985:
tion to investigate selected records with more sophisti-coOpera Ivity (Draber et al., » RISS agy. '
cated methods after a rough picture has been obtaine’gICGeoch & McGeoch, 1994).
from fitting all data. Because of the restricted number, Even though it is recommended to check the results
the best of all available methods can be used. Thirdlypf the first run by more sophisticated methods, in many
using simulations, Magleby and Weiss (1890and cases the results of the one-dimensional dwell-time
Colquhoun et al. (1996) have shown that missed eventanalysis can be used directly. Thus, it is investigated by
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means of simulations, whether the approach presented Original states, U;  Kinetic states, R,  Observed staics, Y,

here can yield results of sufficient quality. b-vector of R,

00 6: (0,0,2) 2
/ \
Presenting an Ensemble of Channels by

one Macrochannel GO 5¢  atn
The concept of a macrochannel for multichannel analysis VKGC e6 3:(1.1.0)
has been used already by Colquhoun and Hawkes (1977, 2. (0.2.0) 0

1990). The way from the single channel to the marco GG 1: (2,0,0)
channel is illustrated by means of Fig. 1 for an ensemble

of two identical channels with three states each, the open Markov Model, k;; Aggregated Markov Models, .
stateO and two closed stateS and G in the following
configuration Fig. 1. Different presentations of the marcochannel. On the left-hand

kco
koc

kca
C—0—G Q)

kac relatedb-vectors (vector of state occupancies). In the case of only one

side are the states of the original model (2 channels o€t G type
of Eqg. 1). The models in the middle and on the right-hand side are
aggregated models. In the middle, the st®Reare represented by the

open state, the numben of Y,, is equal to the last element in the
b-vector.

According to Fig. 1, the nomenclature (including addi-
tional models below) has to distinguish between four
different kinds of models:

B, number ofb-vectors related to the macro
(conductance) stat¥,
0, A, C, G states of the single channé (A are M number of macro (conductance) statgs
open,C, G are closed) b(" ith component of thé-vector of stateR,
Y original states of the marcochannel as (Egs. 3,4)
obtained by writing down all possible The rate constants are
combinations oiN individual single : .
channels K for the single channel (£ i,j < Q)

(m)
RM

with

Qu

kinetic states (kinetically different) of the Krs for the macrochannel (% r.s < B).

macrochannel as described by the

b-vector (vector of state occupancies)

whose Q components give the numbers of The Rate Equations
involved single-channel states & r <

B) o For the change of the probability of being in a kinetic
vector consisting of all statelR. stateR, (which is also calle®,), the following rate equa-
statesR. belonging to one stat¥,, tion holds

vector consisting of the stat@&§™

B B B
The above symbolR are also used for d
the probability of being in statg, P D KR+ D kR Tk R+ D kR ()
conductance states (aggregated states), o o o
which can be distinguished by the
measured macrochannel currents(Im The form of the rate Eq. 2 is obvious, because the con-

=< M). All statesR. which lead to the
same conductance (same number of open
channels) form one staté,.

cept of single-channel analysis can be applied to the
statesR, of the macrochannel (Fig. 1, middle).

The relationship between the marcochannel rate
constants,s and the single-channel rate-constagtsan
be obtained from a comparison of the original model on
the left-hand side of Fig. 1 and the kinetic model in the

number of states in the single channel
model(s) if identical channels are
considered, otherwis®; has to be used in

order to account for different channel middle. If there is a jump from staf@ to stateR; we
typesi call R, a source state arf, a sink state. Those statBs
number of single channels which are eligible as sink states f& can be found by
number of states in the Markov-model at considering the related-vectors (vectors of state occu-
the left-hand side of Fig. 1 pancies). The constraint that the number of channels has
number ofb-vectors (vectors of state to be constant leads to the demand that the vea‘toof

occupancies) R. has to have one channel more in state” = b® +
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1) and one less in state j than the vediSt of R, has. Q Q

Thus, + (" +1) KiiRs b0 e—e (7)
==

b =b +e-g 3) =

In the last sum of Eq. 7b® is replaced byb” + 1,
with & and g having a “1” at positioni or j, respec- according to Eq. 3.
tively, and zeros otherwise. The tern+ g - g is

explained by the following example The Steady-state Probabilities of the Macrochannel

R.(»), the steady-state probability of being in state

by 1™ [b]® [O 0 R(r,b®) is obtained fordR/dt = 0 in Eq. 7. A solution
b= b,+1 | =|b,| +]21]|-|0 (4)  of this equation foiN identical channels is
. )b (1)
Rr’OO =5 . H pi( )bj (8)

In the above jump fronk, to R, the second element in i=1

theb-vector, b, is decreased by 1, and the third element H b

b; is increased by 1. That means that one channel that =t

has been in the single-channel state 2 jumps into th&or the derivation of this equation we have to consider

single-channel state 3. the probability of being in statB, which is described by
The statesR, are aggregated Markov states. bff’  the vectob™. The probability of a single channel to be

is greater than 1, each one of the channels in state i maiy statei is p(c). As this state has to occbf” times, the

jump. Thus, the rate constant of the transition from stateexponenb!" is introduced. Now it has to be considered

R, to R, has to be multiplied by(" how many combinations of thid channels would result
in b channels in state The derivation is simple if we
Kys=h" - k; (5)  start with an ensemble &f channels which hav® = N

states. Then, we consider the special sRfevhich is
i andj have to be obtained from an inspection of thedescribed by the-vectorb® = (1,1,1..1), i.e. alb® =
original states as shown in Fig. 1 at the left-hand side. 1. There areN! permutations of th€ = N states to fill
A jump out of R, into any stateR, occurs when one theQ = N components of that vector.
of the single states i included in®” changes to a state In all otherb-vectors (vectors of state occupancies)
j # i. In order to include all possible jumps, a dou- of this ensemble, the occupancies of the bins are not so
ble sum is obtained for the probability «;, of leaving  evenly distributed. Some of the “1”s are taken out of
stateR, some bins (components) and collected in other bins. In
these bins with multiple occupancy, tb{é) channels of

B e L o equal statg can no longer be distinguished. Thus, the
Ky = D Ky = E E b kK (6)  number of permutations, which bé! in b®, is decreased
o = by a factor ofb® !, and Eq. 8 is obtained. With other

words, the first factor in Eq. 8 gives the number of ki-

The elements in the main diagonal are the negative surfietically equivalent arrangements of tiehannels lead-

of all other elements in the same row (Colquhoun &ing to the same vectds®. _
Hawkes, 1977, 1987, 1995). This consideration applies also to ensembles with

For the jumps intoR. it has to be considered that the number of state@ that is smaller than the number of
b-vector of the source staf, has to have one channel StatesN. In that caseN-Q components of an extended
more in statg and one less in stae because a jump b-vector are set to zero. As a consequence of the re-
from single-channel stajeto single-channel stathasto ~ duced number of occupied places in thevector, the
result in the configuration of the vector of state occupan-2vailable places have to have multiple occupancies. This
ciesb®™ (similar to Eq. 4). leads tob(”® > 1, and the scenario is equal to that de-

This leads to the necessity of extending the indicesscribed above.
of statesR. andR; (which now are the sink and source In addition to the above considerations, the correct-
states, respectively) by the related/ectorsb® andb®  nhess of Eq. 8 is tested in Appendix | by showing that it
of Eq. 3. Using Egs. 5 and 6 the single-channel ratds @ solution of Eq. 7 fodR/dt = 0.

constants are introduced into Eq. 2. N ) )
The Probability Density Functions (p.d.f.) of

Sojourns in the States of the Macrochannel

q Q Q

a __ )

gt R = ~Rep® E b >k, The matrix form of the rate equations of the example in
Fig. 1 is as follows
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R, T first index m indicates the assignment of tiig, eigen-
[ 2] vectorsv®™ to the macrostat¥,,) consists of the com-
d Rs ponents
dt [R4] _ _ . . :
Rs (VMIN)T = [y, ™Dy, MmO ve. ™1 (12)
[Rel
_ _ Because of the segmentation of the fimatrix into
k11K 12K 1d K14K1eK16 submatrices (Eq. 9), thB,, eigenvectors™? are deter-
IK51KooKog KoaKosKog mined only by theB,, x B,,) submatrices. The determi-
- Ik31K3oK33 K34K35K3e nation of the eigenvectos$™? only by the rate constants
= [RiReRs RyRsRs] - Ka1Ka2Ka3 [KaaK 45 Kag ©) K,s belonging to this stat&, avoids interference with
K51K5oKs3 [K54Ksd Ksg eigenvectors of other macro-stafés.
Ke1Ke2Ke3 KaaKes IKeg The macrochannel consisting of the kinetic R-states

is an aggregated Markov model. Because of this, the
solution for single-channel p.d.f.s can be used (Kijima &

f Kijima, 1987a). For this single-channel, the p.d.f. of the
closed state (superscript £)s;, 1S

with k¢ obtained by Eq. 5.

The full equation is required for the determination o
steady-state concentratiofs. In the case of identical
channels, the solution is given by Eqg. 8.

For the p.d.fy,(t) of the duration of sojourns in the Yasit) = > 4 Nt (13)
stateY,,, the reduced equation of the absorbing system ieclosed
(Kijima & Kijima, 1987a) is required. Jumps into the _ o
stateR, must occur only from substraté if the jumps ~ d;'© = 2S° ( > i) v (D k,,J)>2/ftr (14)
leclosed Jeopen

do not change the conductance. Thus, these source states
have to belong to the same index m of the current state ) o
Y, (right-hand side of Fig. 1). In Eq. 9, the aggregationw'th JSh(Jgst shut) indicating that_the channel that has
of the substrateR. belonging to one phenomenological ¢/0sed at time zero and opens at timg; = 1/7; are the
macrostatey,, are indicated by the brackets on the left- €igenvalues of the reduced matrixrilated to the en-
hand side or by overlining and underlining in the middle. sc(ecrri;b_le of closed states as shown by the boxes in Eq. 9.
An inspection of the matrix multiplication shows Vi~ IS the I-th component of the eigenvector of the
that in the reduced rate equations only theseare in- reduced matriX' of the closed stateS® is the scaling
volved which are surrounded by boxes. Even thougHactor. The probabilities are normalized by dividing by
jumps out ofY,, may go to all sink states, they are also fi, the number of all transitions in the record divided by
included in the boxes. This is a consequence of the fadhe sampling time. , _
that the number of jumps out of the level has to be equal In contrast to the single-channel analysis, there is no
to the number of jumps into the level (Colquhoun & longer a distinction between open and closed states in the
Hawkes, 1995). Thus, the elements in the main diagonaﬂ?”alys's of the macrochannel. It is replaced by a distinc-

are the negative sum of all other elements in the sam#on Of the current state¥,, (Fig. 1).
row (Eq. 6). The channel jumps into the lev¥], att” = 0 and

stays there until tim¢ = t. Att’ = tit jumps out of the

B level m. The p.d.f.y,(t) for the dwell-times inY,, is:
Kpp =~ 2 Kij (10) Bm
= - (m) i
Yo®) dt = D, ™ e gt (15)
i=1

k., on the diagonal includes all these transitions out of
R.. Thus, the whole behavior of the reduced rate equaz m _ m (mi) . < )2 (16
tions can be described by the submatricBg, & B,,) 4 ZS“ER’ (%) Ve 2 E kis ) /A (16)
surrounded by boxes.

The eigenVa[Ueﬁi(m) of the submatrice&,, related v, comprises all state® belonging to onem-state
to one state,, (with the state®k ™) are obtained from  (submatrices in Eq. 9)B,, gives the number of the dif-
the solutions of the reduced equation (boxes in Eq. 9) oferent kinetic states comprised in the aggregated state

reYm reYm si¥m

the absorbing system Y- R() is the steady-state probability & - f,™ is
_ _ the average transition frequency for the macrochannel.
N M) = ()T K (11)  Because of the macrochannel approach of Fig. 1, it can

be derived similar to that of the single-channel model
The eigenvecto™ (1 < i < B, and the additional (Kijima & Kijima, 1987a)
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(m_ m oy ited resolution) have always to be fitted by a sum of
fe =2 2/;“ R™ () Sg;m KrsKsr (A7) exponentials (Eq. 15). In the case of filtering, terms of
the formt" exp(/r) are obtained. However, the expo-
) nential terms are a good approximation if the p.d.f. starts
The Scaling of the p.d.f. at t > three dead times, (Colquhoun et al. 1996;
i ) , Magleby & Weiss, 1994), but the evaluated time con-
The scaling factor of the p.d.f.§, is obtained from the  ¢i5nts may be biased. By means of the following simu-
conditions of normalizing the eigenvectors of the re-|a4ons it is investigated how serious this bias is.
duced matrix. The probability of being in the macro- — An important difference between fitting strategies
channel levely,, is lies in the parameters which are delivered. Usually, the
T amplitude factorsd, and time constants; = 1/\; are
Pm=T (18)  obtained. However, the optimum “target” of the analy-
sis should be the set of rate constdgtsIn simple cases,
some of them can be obtained from the inverse time
constants of the closed states £ 1/2k;, Colquhoun &
Hawkes, 1995), but the relationships are highly compli-
cated in most cases (Jackson, 1997). In a target-fit, the

with T, being the overall dwell-time in level,, and T
the overall duration of the experimerni,, is obtained
from the m-th p.d.f.

Bm - Bm 4 (m) rate-constants are determined directly.
- “ M o h ™ g = i The program developed for the target fit of the
T Smfo ; ta-e =S ; N2 (19) p.d.f.s of the macrochannel enables the fit of ensembles
of up to 11 to 3 identical single-channels with up to 2 to
with §;, being the scaling factor. 5 states, respectively. These states may be “open”,
ReplacingT,, in Eq. 19 by Eq. 18 leads to “sublevel” or “closed”. So far, the program is re-
stricted to two classes of open states which are related to
S, = P T (20) two different conductances.
Bm d™ The program (flow diagram is shown in Figl in

Appendix II) starts with the specification of the single-
channel model. The user enters the number of all states
eQ, the number of open stateQ(;) and of sublevel states

2
i=1 )\i(m)

Since the temporal resolution of the measured dwell-tim . ° .
histograms is given by the sampling periBdEq. 15 has (Qsup- There is the convention, that the first states are
to be integrated over the range of one bin. Assuming thaPP€" ones. In the middle are the sublevel states, and the

d., is constant within one bin, the integration can pe closed ones are the last ones.
replaced by multiplyinggl,, with T, After assigning the states, the computer has to know
m s

from which single-channel state to which single-channel
P T+ T state transitions may occur. For this purpose, the pro-
=5 (21)  gram prepares @ x Q matrix. The model is selected by
specifying the transitionk; in this matrix. This is done
= \(M2 by assigning nonzero numbers to the selected transitions.
Normally, the values of these numbers are less impor-
The probabilityp,,, of being in statey,, is the sum of the tant. However, since these numbers are used as startin
probabilitiesR () of being in one of the substaté%  values of thek; in a subsequent fitting routine, the fitting
belonging toY,, procedure runs better if these values are similar to those
known from other experiments or from a reasonable

~ Bm dm
1

§ - guess.
~ R (=) For the creation of th B x B K-matrix of the mac-
So=Te T o (22)  rochannel, a two-dimensional array of states of the size
S 4 (Q + 1+ Q,) x B comprising allb®-vectors of the states
= \M? R. has to be generated. An example of the array is given
in Table 1 for an ensemble of three@S C G F—
channels with the last three states being nonconducting.
A Computer Program for a Target Fit of the Q. is the number of different single-channel conductance
Multichannel p.d.f.s. levels. The firstQ, components in the rows give the

numbers of channels in the different conductances states
Because of the linearity of Markov processes, dwell-time(full conductance and subconductance in the example of
histograms obtained from an ideal detector (without lim-Table 1). Blocks of rows with equah,,, m,)-entries
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Table 1. An example of the array of states for an ensemble of threebQ(r) are filled with b taken from the actualy,1)n
O-S-C-G-Fchannel withO = full conductance an® = subconduc-  number (which has fulfilled the condition of Eq. 23).
tance At the end of the counting procedure, the array is filled.
My M bm B® b® bO bO bO r dec The construction of thé x B macrochannekK -
matrix (Eq. 9) starts with the empty matri® (= number

0 0 1 0 0 0 0 3 1 3 of all R states). To find the entries of theth column
2 0 0 0 1 2 2 6 (elements,withr = 1toBands # r), b® is compared
3 6 o0 o0 2 1 3 9 with all vectorsb®™m°P-MsuP of nossible source statéd
g 8 8 2 g g ;‘ 1; in the array of states. Those vectbf8, which fulfill the
6 0 0 1 1 1 6 21 relationship of Eq_. 3 Iga_d to nonzero entries as given by
7 0o o 1 2 o0 7 o4 EQ.5and 6. Having finished the creation of the macro-
8 0 0 3 0 0 8 48 channel K-matrix, the steady-state concentratiBi{s)
0 1 1 0 1 0 0 2 9 66 can be calculated by means of Eq. 8.
2 0 1 0 1 1 10 69 For the solution of the rate-equations of the reduced
3 0 1 0 2 0 1l 72 gystem (Egs. 7 and 11), the bookkeeping indivgsand
g 8 i i 2 é g Si m,, are used to find the submatrices belonging to the
6 o0 1 5 0 0 14 o StateYy The eigenvalues are calculated by a routine in
0 2 1. 0 2 0o 0o 1 15 129 the package “Eispack” obtained from the internet.

etc. The procedure described above is embedded in a
fitting routine which changes thig; until the difference

The colummr is the address of the row in the matrix K of Eq. 9. dec ist petween the theoretical and the measured p.d.f.s reache
the decimal value of the counter. a minimum. According to our experience with fitting
data of biological systems, the most successful nonlinear
fitting routine is the Simplex algorithm (Caceci & Cach-
eris, 1984; Press et al., 1987). The fitting routine is part
%f our patch analysis program day.pas which is available
gn request.

are combined to give on¥,, state. bm counts the indi-
vidual b-vectors (vectors of state occupancies) belongin
to oneY,, The last number bm in such a blockBs,
The other elements of the row are the components of th
relatedb-vector. r is the address of this row of the array.
It is also the index pf the related sta®e. Test by Application to Simulated Data
For the generation of the array of Table 1, a counter
is employed. This counter does not use the decimal sy:
tem, but a system with the basiN ¢ 1). A b-vector is
a numbery.,qyn in this (N + 1) system (the occupancies
of b™ can be 0 toN) with Q digits. However, not all
numbersy..1yn are validb-vectors.
The selection ob-vectors and their assignment is

Sto study the strength of the multichannel analysis, tests
with simulated data were performed. A time series of
simulated patch current (as described below) was gener-
ated from an ensemble of channels with known states
and known rate constants and superimposed by red noise
; with SNR (signal-to-noise ratio)= 1 or SNR = 25.
done as followsbmis set to zero, and the counter Starts ¢, ;) eqe noisy records, the noise-free time series was

W'trt] (“irl).rt]. B tl an(; continues JE[%N‘fll)nta. ('tNh+ 1) hel constructed by means of a 4th order Hinkley detector
(actually it is stopped as soon as the last digit has reac eéchultze & Draber, 1993; Hansen et al., 1995). The

(rmax) _ _ - ;
[t;letslc;br(lgnot be vall\ilt;vi:)c,tg?scggiﬁeﬂ:wi;ubk:asrecg}ucehnatnr:wirg software of the Hinkley detector aiso provided book-
keeping of the transitions in order to create the “experi-

would be greater thaN). -, " )
At each counting step, an if-statement asks WhetheEJer?éilt dwell-time histogramgy(t) for each level, of

the sum of all digits isN In the case of multichannel simulations, the kinetic

Q states of a macrochannel (Fig. 1, middle) were used. The
E bi<r) =N? (23) rate constants were entered as rate constants of this mac
i-1 rochannel according to Egs. 5 and 6. The benefit of this
approach is the simple introduction of special effects like
because the sum of the digits is the number of channelshannel interaction as illustrated below.
in the ensemble, and this always has toNbe Simulations were done as follows. The program
If the answer is yes, the indices,, and my,, are  started in level zero (all channels closed). Then, a ran-
determined by adding the digits belonging to the opendom generator delivered two numbers. The first one was
states and to the substates, respectively. The element bnsed to calculate the time of the next jump from the
in the third component of Table 1 is increased by onesource state to the sink state (continuous time). The
It is set back to one whemy,,or m,, change.b,®, .. dwell-time distribution of the source stae is
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y.() =1 - exp(-\, t) with —k,, =\, = EKrs (24)  always the same time course of the noise was used in the
SZr simulations, (variations occurred only in the time series
of the “channel”), the whole time-series of noise was
s labels all possible sink states for a jump out of thestored in the computer. For composing a noisy patch-
present stat®, . The amplitude factor “1” is used be- clamp record, the freshly prepared channel time series
cause the random numbers are equally distributed bewvas added to the stored noise series with the same anti-
tween 0 and 1. The first random numbrgrwas used as aliasing filter. The signal-to-noise ratio was defined by
an entry of the ordinate of Eq. 24, and the related value

t; at the abscissa is taken as the time of the jump (Pre _ '_o 2
et al., 1987). “SNR-= o (27)

1 i i-
‘= In(ny) (25) The assumed sampling rate was 200 kHz, and the anti

] E K aliasing filter was a 4-pole Bessel filter with a corner
= frequency of 50 kHz.
The first set of simulations was done with 1 to 8

Now, the second random numbey(equally distributed, identical channels with the following configuration (rate
0 < n, < 1) was used to give the aim (sink stajeof the ~ constants in séd)

jump. The interval between 0 and 1 was divided into

sectionsk,./\, (Eq. 24). That stat®, was selected in _ Koc =100 Kgo=1000

whose sectiom, happened to fall. After this jump, the s o0 s G (28)
algorithm started again from this new state by generating Keo=50  kog =500
two new random numbers.

The effect of the anti-aliasing filter was introduced
as follows: The jump caused a response of the 4-pol
Bessel anti-aliasing filter which was taken out of a (SNR) Of.l' . . S
memory where jump responses of the anti-aliasing filters | N€ time series were fed into the program which is

were stored. Thus, the series of jumps created by th@resented in the flow diagram of Fig. Al. Firstly, the

random generators resulted in a sum of delayed filteCUTent levels of thér, were determined by positioning
horizontal lines in the original time series (fit by eye).

Fig. 2A shows a section from the time series of a 4-
&hannel simulation run with a signal-to-noise ratio

responses ' :
Then, these levels were used as starting values for a fit of
w the amplitude histograms by a sum of Gaussian distribu-
I(t) = E lie,j = lrsj (1= N(t=1)) (26) tionfs. The variqnces and the levels were used for' the
=1 settings of the jump detector. For the reconstruction of

the noise-free time series (smooth line Fig\)2a 4th-

with 1,5; being the step in current related to the jump order Hinkley detector (Hansen et al., 1995; Schultze &
from stateR. before the jump to the state, after the  Draber, 1993) was employed. The Hinkley detector pro-
jump at timet;; t; is given in continuous time (Eq. 25), gram also did bookkeeping of the recorded jumps and
and mostly does not coincide with the sampling points.created the histograms as shown in Fid3-Z for the 5
Then,h(t - t;) is obtained from interpolation of the stored levels with none to four channels open.
values ofh(t). The upper limit of the sum in Eq. 26 is Fitting of these dwell-time histograms with Egs. 15
determined by the timg, that is required by (£ h(t)) to  and 16 resulted in the smooth lines in Fig32F. The fit
decrease below one bit of the DA converter. Responseseems to be quite good for level O to level 3. In the case
of jumps which had occurred befote- t, were ignored. of level 4 (Fig. F) it has to be taken into account that the

This procedure resulted in a much shorter computinghumbers of events are quite low. Noninteger numbers
time for the calculation of a time series of 2,000,000below 1 event result from presenting average numbers
samples than a decision at every sampling point if anger dwell-time unit. Numbers below one imply that
where to jump. In addition, this program generated amany bins were empty.
continuous Markov process, as natural channels do. This The crucial question is whether the fitting routine
automatically includes multiple jumps in a sampling pe-can reveal the original rate constants which were used to
riod T generate the simulated data. In order not to depend on

The generated time series was superimposed bthe statistical uncertainty of a single experiment, the
noise. White Gaussian noise was generated by a Boxsimulations were done 100 to 200 times. Even though
Muller algorithm (Press et al., 1987). Filtering in order the same program was used for their generation, time
to obtain white, red or blue noise could be done by digitalcourses were different because of the involvement of the
filtering. In the simultaneous red noise (prefiltered by two random generators. Histograms of the distributions
the same filterh(t) as used in Eq. 26) was used. As of the evaluated rate constants were obtained by plotting



28 R. Blunck et al.: Multichannel Dwell-Time Analysis

2
y
1
n
0 LR
10 0.1 1 10
t/ms t /ms

Fig. 2. Section of the time series ofGO-Gmodel with four channels.
(Fig. 1A) and fits of the dwell-time histograms of current levelR) (o % ; k 01 % 0 K 05

level 4 ) with 4 channels by means of Eqg. 15. The histograms are oc¢ ' og '

represented on a logrithmic scale, but the ordinate gives the number of

events in a bin divided by the width of that bin. The length of the bins Fig- 3. Histograms of the single-channel rate constants &-@-G
increased exponentially within order to give an adequate scaling of model (Eq. 28) resulting from fitting dwell-time distributions like those
fast and slow components and in order to give nearly equal statisticaln Fig- 2. The data were obtained from 100 simulations of a 4-channel
weight to fast and slow components in the error sum of the fitting Model with the rate-constants given in Eq. 28) {0 (D): SNR = 25,
routine. For the simulations, the rate constants given in Eq. 28 werdE) t0 (G): SNR = 1 (noise filtered byn(t) of Eq. 26). The mean values
used. Sampling rate was 200 kHz: 20° data points in a time series (in 1/msec) are the numbers at the abscissa\jnt¢ (D). The mean
with ca. 14,000 transitions. Anti-aliasing filter: 50 kHz. A sojourn ina Values and the standard deviatiansre also given in Table 2.

level is ended by a jump upwards or by a jump downwards. The smooth

lines present the fits on the basis of Egs. 15 and 16.

strong noise (Fig. E-H). Most of the “experiments”

) ) ) . gave satisfactory results, but there were some failures as
the number of simulations which led to a rate constant ifgicated by the isolated “off peak” events in Fig. 3

the bin fromk; to k; + Ak; (Ak; is indicated by the width EF,G.

of the columnsys. k. _ The increase of the channel number from 4 to 8
The results obtained from a model with 4 channels.,,ses problems in the case of noisy data (Fig. 4). Fig-

of the configuration as given by Eq. 28 are shown in Fig. ;re 4ao-D (SNR = 25) shows good results besides some

3. The upper four hist(_)grams_ of the single-channel rat%ff-peak values with easily could be eliminated by a

constantsk;) were obtained with a SNR of 25, the lower \isya| inspection of the fitted p.d.f.s. However, in the

four with SNR = 1. SNR = 1 is a worst-case consid- case of SNR= 1 the scatter is tremendous (Fig.E4

eration, as in our lab data sampled with 200 kHz and, H).

filtered by a 50-kHz filter reached a SNR of 2 to 3 This high scatter does not seem to be a failure of the

(Hansen et al., 1997). _ multichannel analysis of Eq. 15, but of the jump detec-
In the case of SNR= 25 (nearly noise-free), the on algorithms. This is illustrated in Fig. 5. Here the

multichannel analysis with 4 channels (Figh3D) gave  rate constants were decreased by a factor of 5 (rate con
results which were of equal quality as those obtained foltants in sed).

one channel with SNR= 1 and SNR= 25 (histograms

not shown, because they were not different from those in ko =20 kgo=200

Fig. 3A-D, but averaged values are given in Table 2). ¢ s (e} S G (29)
However, the results get worse in the presence of kog=10 Kkyg=100
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Table 2. Comparison of the mean values (in SBcobtained from n 20

fitting the 3-state models of Figs. 3to 5 A B
Rate constants/set k.o 0 kgo © koc ¢  kog ©
Nominal 50 1,000 100 500

ch SNR MS

1 25 2 40 5 992 51 88 13 507 26

1 1 2 36 5 930 53 79 12 446 26 "
4 25 2 43 7 990 60 83 2 501 20

4 1 2 28 12 841 130 55 16 441 17

8 25 2 40 24 972 157 83 52 508 53

8 1 2 61 87 815 1521 159 665 380 255
Nominal 10 200 20 100

8 1 10 8 5 187 38 15 11 96 10 n

ch = numbers of channels, SNR signal-to-noise ratio (Eq. 27), MS
= 10° samples.

To compensate for the reduction of the number of events, %
the number of samples was increased t4. 10 Fig. 5, n 40
the results are much better than in the lower part of
Fig. 4.

The reason for the difference in fit quality of Fig. 4
and 5 gets obvious in Fig. 6. Here, the measured p.d.f.s.
are compared with those calculated on the basis of Eq. 15 0 e Iofmbhet « .
from the original rate constants for the fits in Fig. 4 and 0 02 k, 04 8o keg 05
in Fig. 5. Since the smooth lines in Fig. 6 are not fits, but
the “true” curves, the difference between the smooth Fig. 4. Histograms of the single-channel rate constants &-@-G
lines and the data points is an indication of the failure ofnmecl’;":soslﬁ:'c’i‘ggdfirgqu‘;‘r’g S'S”;:q'gi';’gsr;fezrggdki;"”m so'fd;;g‘:;')i‘r’]:‘:”'
the jump detection algom.hm in the C"’.‘SG of noisy dat?" = 2 10° with ca. 28,000 transitions. Anti-aliasin,g filter 50 kHZAY
The temporal resolution of the Hinkley detector is 1, ). sNR = 25, €) to (G): SNR = 1. The mean values (in 1/msec)
automatically adjusted to the SNR to keep the number Ofire the numbers at the abscissaAnto (D). The mean values and the
false alarms below a level of 1 per“l€amples (Schultze standard deviations are also given in Table 2.

& Draber, 1993). Thus, the number of missed events

increases dramatically in the case of high noise. Figure 6

shows that the “slow” channel of Fig. 5 (Eq. 29) can be resylt according to our experience obtained from fitting
detected with small errors, but that in the case of theyt piplogical systems.

“fast” system of Fig. 4 (Eq. 28), the dwell-time distri- The small deviations of the mean values in Table 2
butions delivered by the detector are wrong. The numbefexcept row no. 6) indicates that the results can be im-

of detected fast events is too low. In the case of theyroved by using longer time series. This is illustrated for

nearly noise-free data of the upper half of Fig. 4, theihe next model.

dwell-time distributions were okayn6t showi because The performance of the fitting routine also depends

the noise-dependent temporal resolution was much beg, the selected model. The analysis of an ensemble with

mines the temporal resolution of patch clamp recordingseonductance, rate constants in $¢c

To compare the results of Figs. 3-5, the mean values
and the standard deviations of the histograms in Figs. 3 koc=1000 k,o=50 kga=400
to 5 are displayed in Table 2. The upper line gives thec s O s A 5 G (30)
“true” values as used for the simulation program. kco =500  koa=30 Kkas=200

Table 2 shows that the mean values of the histo-
grams are not so far away from the “true” values, evendid not give satisfactory results even with SNR 25
in the case of the noisy 8-channel data of Fige-<4H. (Fig. 7) when time series with 210° data points are
Mostly the difference is 10 to 20%. However, even anused. Time series with 1010° data points (Fig. 8) gave
error of 50% may be accepted. This is still a “good” much better results. This becomes obvious in Table 3
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Fig. 5. Histograms of the single-channel rate constants &-@-G
model obtained from 100 simulations of model with 8 identical chan- E
nels as specified in Eq. 29. The SNR was 1 as in Fige ¥ H.
However, in contrast to Fig. 4, the rate constants were divided by a
factor of 5. Sampling rate= 200 kHz, no. of simulations= 10” with 204
ca. 7,000 transitions. Anti-aliasing filter 50 kHz. The mean values (in
1/msec) and the standard deviatiangire given in Table 2.

A B i ; an 5o ()1 o
0.0 0.2 0.4 0.0 0.8 1.6
300 k K
y ag ga
20 .
200 y Fig. 7. Histograms of the single-channel rate constants obtained from
10 RS 100 simulations of model with 2 identical 4-state chann@l<O-A-G
100 B with O andA being open) as specified in Eg. 30. Sampling rat00
G kHz, no. of data points= 2 - 10° and ca. 58,000 transitions. Anti-
00_1 10 00 1 1 10 aliasing filter 50 kHz. SNR= 25. The mean values (in 1/msec) and the

t/ms standard deviations are given in Table 2.

Fig. 6. Failure of the jump detector in noisy 8-channel recordings Channel interaction is introduced by making the rate

(SNR = 1) as illustrated by the dwell-time distributiorsegFig. 2) of constants of channel Opening dependent on the numbel
the current level 2 for th€-O-G model with @) the rate constants of m of open channels. e g

Fig. 4 (Eq. 28) andR) with the slower rate constants of Fig 5 (Eq. 29).
The smooth lines give the “true” curve as calculated by means of Eq.k; =Ko (1+C - m) (31)

16 using the original rate-constants. The dots are the number of so- . . . . .
journs determined by the Hinkley detector. The situation was similarfOf index i belonging to stater;;, and indexj to state

for the other levels, besides that the number of data points was very lowm+1 * C is the interaction factor, which increases the
in level 8 and that the discrepancy was much smaller for level 0. open probability if neighboring channels are open. This
is an arbitrary example in order to illustrate the method.
Iwasa et al. (1986) have found the opposite effect, a
showing the mean values and the standard deviations afecreasing of the opening rate constant when another
the 4-state model fits. channel is already open.
With ¢ = 0.2,keo = 500 sec* andkoe = 2,000
sec?, Eqg. 31 leads to the following transition matrix of
Channel Interaction the C-O model (rate constants in 1,000 s8¢

-2 2 0 0 O
In the introduction it was mentioned that a major benefit

of the macrochannel in Fig. 1 is the possible introduction 23818 0 0
of special conditions. One of these is channel interacK=] 0 4 —54 14 0 (32)
tion. This is demonstrated for a 2-state 4-channels example 0 0 6 68038
with the rate constants given in the legend of Fig. 9. 0O 0 O 8 -8
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the data with channel interaction required the calculation
of the steady-state conditions by using the full matrix
equation withdR/dt = 0 (Egs. 2 and 9).

The distribution of the resulting single-channel rate
constants and of the channel interaction faatoare
shown in Fig. 9. The bias of the mean values of the fitted
parameters is about 10% in the case of rate constants
The mean value of the channel interaction factor gave the
best result with a bias of 0.1%.
oc We investigated what would happen if the above
data simulated with channel interaction were fitted by a
channel interaction-free model. For this purpose, the fit-
ting routine was not allowed to usein Eq. 31 ¢ = 0,
as in the simulations of the preceding section). Figure 10
shows a comparison of the fits with and without allowing
channel interaction. Only the upper three levels are
shown, because a deviation was not seen in the levels
zero and one channel open. For the level with zero chan-
nels open, a deviation would not be expected= 0 in

kao Eg. 31). In the first level, the effect is still small.
F ‘ Figure 10 shows that the failure of the model ignor-
| ing channel interaction increases with the number of
open channels. The deviation is maximum when the
fourth channel goes in the open state (FiB).9

n40{A B

201

oo

000 008 012 O

101

51 Figures 9 and 10 demonstrate that the macrochannel
approach can be used to test for channel interaction.
ot L
0.0 1.0 Conclusions and Recommendations for Fitting
the Data

i)gd 8. HiISt‘?gramf of thcej Ting'ﬁghgnne' rlf"fle CO”Sti”tSr%?taizeg froMn the introduction the question was raised whether the
simulations of a model wit identical 4-state chan - . . . . .
with O andA being open) as specified in Eq. 30. Conditions’i'éas in Fig. results of the simple f_lt of dwell-time histograms (Wlth._
7, but 10 data points in a time series. The mean values (in 1/msec) ofout corrections for mls_sed e\_/ents) (_:an be used as final
the distributions and the standard deviatienare given in Table 3. results or whether their role is restricted to that of pro-
viding starting values for more sophisticated and more
time-consuming approaches. Figures 3 and 9 show good
Eqg. 31 introduces channel interaction into the elementsesults. In Figs. A-D,5, 7 and 8, at least the faster rate
above the diagonal in Eq. 32. The rate-constgptcor-  constants around 1,000 Séare obtained with reason-
responds to the opening of one channel. AS’ is 4  able reliability.
(each one of the four closed channels can open), its value However, the simulations also show the flaws of the
is 4 keo = 2,000 sec* with m = 0 in Eq. 31. The method. There are the complete failures in Fige-4H,
strongest effect of channel interaction is foundkjg = and the broad distributions of the slow rate-constants in
800 sec?, even though it is the smallest of the opening other figures. The failures are of different origin. In the
rate-constants (becausg® = 1) - b, k. is increased case of Fig. 7, the fits could be improved (Fig. 8) by
to ka5 = b, koo (1 + 3-0.2) = 800 sect, because m increasing the length of the time series by a factor of 5.
in Eq. 31 is 3 (three channels open). This implies that the statistical significance of the time
To show the convergence of the algoritipar se,  series was not reached, and the application of more so-
nearly noise-free simulations were done (SNR25).  phisticated methods would not help.
145 simulated records with 210° data points were sub- On the other hand, the improvement of the fits of
ject to the fitting routine (without visual control). The Fig. 4 E-F by slowing down the rate constants by a
rate-equations (Egs. 2, 15 and 16) could be solved by th&ctor of 5 (Fig. 5) is an indication that a missed-events
same software as used for the examples above. Howgorrection were necessary. The missed-events problen
ever, the calculation of the steady-state concentrations also the reason for the influence of noise illustrated by
R.(«) required some extra thoughts. Whereas in the casthe difference between the upper and lower half of Fig. 4.
of channel interaction-free models, Eq. 8 could be usedAs the integration time of the Hinkley detector (Schultze
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Table 3. Comparison of the mean values (in S§cobtained from fitting the 4-state model of Eq. 30 with two channels and
different numbers of data points (Figs. 7 and 8)

k; /sec o keo o Koc o Koa o Kao o Kac o Kac o

ch SNR MS 1000 500 30 50 200 400

2 25 2 963 108 499 32 37 33 86 82 90 99 530 1062
2 25 10 972 51 488 14 47 28 98 68 155 79 503 530

ch = numbers of channels, SNR signal to noise ratio (Eq. 27), MS 10° samples.

A B
10 10 .
y S
\\\‘\
\.
0 0 e
1
0.01 0.1
t/ms 1
D
80 80
y y
40 40
0 0
0. 10 0 10
200 200
Y y
100 100
n
0 0
201 0.01 0.1 1 10 0.01 0.1 1 10
t/ms t/ms
10 Fig. 10. Comparison of the fits of the dwell-time histogranse€Fig.
2) of the channel interaction model of Fig. 9 fitted by a channel inter-
action model ), (C) and €), and by a model without channel inter-
0 : action @), (D) and F). Only the fits of level 4 A,B), level 3 C,D) and
0.0 0.2 0.4 level 2 E,F) are shown.

C

Fig. 9. Histograms of the rate constants and channel interaction factothe fits in Figs. 4, 5, 6 and 7 can be improved by using
obtained from 145 simulations of a 2-sta®@-Q) model with 4 chan- g different ﬁtting strategy. It may be assumed that the
nels and With_a channel interaction factorrnf=_10.2 according to Eq. bias is a fault of the least square fit (LS) which is known
31. The nominal values weréco = 500 sec kHz, koc = 2000 44 jaa to biased estimates. In a recent investigation we
sect. The mean values (in ms&g of the distributions and the standard . .
deviationso are given in Table 3. h_ave_ replaced thg Ieast-squar_e fit _by a Maximum-
Likelihood (ML) estimator. The simulations have shown
that there is a better performance of the ML estimator if
& Draber, 1993) is adjusted to the SNR, the dead time ofthe time constants are in the middle of the time window
the detector is much longer in the lower part of Fig. 4.(the range given by the anti-aliasing filter and the length
The results here are similar to those of Colquhoun et alof the time series), but LS does better if the time con-
(1996) that the slower time constants suffered more thastants are at the edges of the time window. This is just
the medium one from undetected interruptions of longthe region where the missed-events problem would come
sojourns. into play.
The question may be raised whether the quality of  To test the significance of the error sums, the de-
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A 0,064 B distributions does not coincide with the rate constants
+ ) * used for the simulation. The shift of a medium time
0oz R constant to higher values as caused by missed interrup-
ke | 57 0064 X tions (Colquhoun et al., 1996) would be continued in the
* ‘**‘:iji Koc | o fopr simulated data, and thus can be detected.
0019 +% e 0,024 < 5 Another way is to take those data sets that provided
o e, e rate constants that are close to the averaged values of the
Fre, [ s : :
0,004 oM gﬂgﬁ o whole experiment and subject them to one of the more
’ ; . 0.00 , ’ : sophisticated approaches mentioned in the introduction.
10 e 15 10 e 15 Then it has to be determined whether both approaches

lead to the same results.
Fig. 11. Relationship between error suenon the abscissa) and esti-
mated values of the rate constants (in m&ek.o (A) andkoc (B) for

the simulations of Fig. #andC, respectively. We are grateful to Mrs. Maike Keunecke and Mr. Dirk Kukulenz for

stimulating discussions and to Prof. Dr. O. Pongs, Hamburg, for useful
hints.
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Appendix |

STEADY STATE CONCENTRATIONS R (%0) OF
THE MACROCHANNEL

Introducing Eq. 8 into Eqg. 7 leads to

d
&Rr,bm =
Q Q )(bk‘”)
20" XK, N'H G
i=1 =1 k=1 (bk
J#i
>y [P b
+ B+ K (N = 1= =
i=1 k=1 bk ! pivx(bj‘” + l)

=1
I

(A1)
The last quotient in Eq. A1 accounts for the fact that there isjetate

more inR; than inR, as given byb® = b® + ¢ - g and one less in
statei.

& () 2 2 & p
N5 ) 200 | 2K+ 2 k™ (A2)
1 bt =1 j=11 _':1 o0
j# 1#

The lastterm in Eq. A2 i§ k; because of microreversibility; k; p; (=)
= 3, ki p; (=) (Cohquhoun & Hawkes, 1987). Thus, Eq. A2 is zero,
and Eq. 8 gives the steady-state solution of Eq. 7.
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enter model

b-vectors
to table 1

generate
according

[ ]

[ find transitions ]

insert ks (Eq. 5 and 6)
into K-Matrix Eq, 9

[ J

read
time series

[
_

)
)

levels and
a

eigenvectors &
-values (Eq. 7 and 11)

[Hinkley dctcctoa [ R, ,Eq. 8 ]
ggfé;f;ﬁi [ p.df Eq. 15,1617 ]
_*—'[ X2 error ]

change ki;
by simplex

stop fit and
display k;;

Fig. Al. Block diagram of the fit program; “levels and: the cur-
rent-levels and the variance of the noise are determined by two meth-
ods: (i) Fit-by-eye: horizontal lines are adjusted in the original time-
series, the noise is calculated from the deviations of the data-points.
(i) Amplitude histograms: The levels and the noise are obtained from
a simplex-fit of the amplitude histograms with a sum of Gaussian
distributions. Level andr are required by the Hinkley detector to
reconstruct the time series. “enter model”: the number of states, the
configuration of the single-channel model, and the number of channels
have to be entered. The possible transitions of the single-channel
model are communicated to the computer by entering nonzero esti-
mates for the relatel;; “find transitions”: the single-channel model
and theb-vectors are inspected in order to find the transitions in the

K-matrix; *x? error”: the error is calculated as (p.c-fdata¥/ data;

Fig. Al shows the block diagram of the program used for the evaluation‘changek; by simplex”: A simplex algorithm is employed to find the

of the simulated time series.

optimum set ofk;.



