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Abstract. Exact algorithms for the kinetic analysis of
multichannel patch-clamp records require hours to days
for a single record. Thus, it may be reasonable to use a
fast but less accurate method for the analysis of all data
sets and to use the results for a reanalysis of some se-
lected records with more sophisticated approaches. For
the first run, the tools of single-channel analysis were
used for the evaluation of the single-channel rate con-
stants from multichannel dwell-time histograms. This
could be achieved by presenting an ensemble of single
channels by a ‘‘macrochannel’’ comprising all possible
states of the ensemble of channels. Equations for the
calculations of the elements of the macrochannel transi-
tion matrix and for the steady-state concentrations for
individual states are given. Simulations of multichannel
records with 1 to 8 channels with two closed and one
open states and with 2 channels with two open and two
closed states were done in order to investigate under
which conditions the one-dimensional dwell-time analy-
sis itself already provides reliable results. Distributions
of the evaluated single-channel rate constants show that
a bias of the estimations of the single-channel rate con-
stants of 10 to 20% has to be accepted. The comparison
of simulations with signal-to-noise ratios of SNR4 1 or
SNR 4 25 demonstrates that the major problem is not
the convergence of the fitting routine, but failures of the
level detector algorithm which creates the dwell-times
distributions from noisy time series.

The macrochannel presentation allows the incorpo-
ration of constraints like channel interaction. The evalu-
ation of simulated 4-channel records in which the rate-
constant of opening increased by 20% per already open
channel could reveal the interaction factor.

Key words: Channel interaction — Dwell-time histo-
grams — Markov process — Rate constants — Target-fit

Introduction

Channels in biological membranes are mostly described
by aggregated Markov processes (Colquhoun & Hawkes,
1977, 1981, 1982, 1987, 1990, 1995; Korn & Horn,
1988; Neher & Stevens, 1977; Yeo et al., 1988; Ball &
Rice, 1992). This means that the gating behavior of a
channel is described by spontaneous jumps between dis-
crete states, which may differ in their conductance. The
aim of a kinetic analysis is to evaluate the arrangement of
the states and the transition rates.

A minority of workers make use of the deviations
from Gaussian distributions in amplitude distributions by
an analysis based on beta distributions (FitzHugh, 1983;
Yellen 1984; Klieber & Gradmann, 1993).

The majority prefers the analysis of the measured
temporal behavior of the patch clamp current, and a great
variety of methods is employed. Some algorithms deal
with each data point of the time series, others make use
of pre-averaged data that enter the calculations as one- or
two-dimensional dwell-time distributions. Dwell-time
distributions give the probability that a given duration of
a sojourn in a certain state will be observed. If the prob-
ability distribution of the length of these sojourns is de-
pendent on the dwell-time in the preceding state(s),
higher-dimensional dwell-time distributions are used.
Another difference between approaches is in their capa-
bility to account for the effects of missed events and
noise.

Another feature which renders the evaluation of
single-channel rate constants from dwell-times difficult
is the fact that channels often occur in clusters. This
aggregation is probably brought about by binding to
membrane-associated guanylate kinases, as shown by
Kim et al. (1995) for Shaker-type K+ channels. The in-
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volvement of the cytoskeleton is also indicated by the
observation that single-channel records can be obtained
if cytochalasin is given which makes the channels spread
(Pongs,personal communication). This cluster forma-
tion may be the origin of rarely observed channel inter-
action (Yeramian, Trautman & Claverie, 1986; Manivan-
nan et al., 1992; Draber, Schultze & Hansen, 1993; Liu
& Dilger, 1993).

The majority of tools for the evaluation of patch-
clamp data is tailored for single-channel dwell-time dis-
tributions (Ball & Sansom 1989; McManus and
Magleby, 1989; Magleby & Weiss 1990a,b; Ball, Milne
& Yeo, 1993; Colquhoun, Hawkes & Srodzinski, 1996).
It is difficult to interpret the data obtained from the fits of
multichannel records in terms of single-channel param-
eters. Thus, the analysis of the kinetics of gating is often
restricted to:

– single-channel records or multichannel records
with sections of only one active channel;

– fast flickering (Draber et al., 1993);
– evaluation only of the states ‘‘all channels open’’

or ‘‘all channels closed’’ thus using the dwell-time his-
tograms with the smallest number of events and a low
statistical significance.

The restriction to single-channel records leads to the
rejection of many experiments. However, there are pow-
erful approaches for multichannel analysis, e.g., the di-
rect fit of the time series. The required computer time
could be limited to hours or days by using a one-step
prediction algorithm. The approach of Horn and Lange
(1983) was already a multichannel analysis, which was
based on recursive one-step prediction of the composi-
tion of open states. A missed-events correction was in-
troduced later. It was approximate (Sine, Claudio & Sig-
worth, 1990) or exact (Colquhoun et al., 1996), but in
both cases it was restricted to single-channel analysis
with a constant dead time which ignores the effects of
noise and of the memory of the detector (Magleby &
Weiss, 1990a).

The potential for implementing all desirable options
is provided by the method of Fredkin and Rice (1992)
which was extended to multichannel analysis by Albert-
sen and Hansen (1994) and Klein, Timmer and
Honerkamp (1997). Here, also the states of the involved
channels are predicted. However, in contrast to the ap-
proach of Horn and Lange (1983) the calculation of the
likelihood is not based on the probability that the pre-
dicted state does occur, but that the measured current can
be assigned to the predicted state. This provides two
benefits: Firstly, a jump detector is avoided. Level de-
tection is still employed as the overall amplitude histo-
gram has to be split into partial amplitude distributions
that provide the probability that a measured current is

related to a certain level. Secondly, noise is accounted
for because the width of the partial amplitude histograms
determines the probability that the measured current is
related to the predicted state. Furthermore, filtering can
be included by splitting multistate multichannel beta dis-
tributions into partial amplitude histograms (FitzHugh,
1983; Yellen, 1984). The algorithms for multistate mul-
tichannel histograms have been furnished by Riessner
(1994).

However, the prediction of the time series and the
simulation of two-dimensional dwell-time distributions
require computer time which ranges from several hours
to several days (Magleby & Weiss 1990b; Albertsen &
Hansen 1994) for just one patch-clamp record. The
problem of computer time seemed to be overcome by
Qin, Aucherbach and Sachs (1996) who used the recon-
structed time series for the prediction algorithm. How-
ever, here again a jump detector had to be employed, and
the missed-events correction was based on a multichan-
nel extension of the approach of Roux and Sauve´ (1985)
which does not account for the memory of the detector
(filtering).

The required computer time may become a problem
if great amounts of data have to be analyzed. An ex-
ample that illustrates the need of a faster approach is the
study of the fast-blocking effects of metal ions on the K+

channel inChara (Draber & Hansen, 1994; Hansen,
Keunecke & Blunck, 1997) with a sampling rate of 200
kHz: 2 million data points are stored on disk every 10
sec. Most of the records include more than one channel.

Secondly, besides the extreme computer time re-
quired by the direct fit of the original time series, there is
another problem that may be considered to be just of
psychological origin, but many workers will feel that this
is important: the investigator has to rely completely on
the computer algorithm because the whole analysis of the
direct fit occurs ‘‘in a long dark tunnel.’’ The investi-
gator starts the fitting routine and gets just a handful of
numbers (4 to 10 rate constantskij) at the end of the
tunnel after 1 to 100hr. There is no visual control of the
progress of the fitting process. In the case of dwell-time
distributions, there are diagrams with clouds of data
points with more or less pronounced curvature, and the
computer draws lines through these clouds. Then, the
researcher can judge by eye whether this fit is convincing
or not, and weighting factors may be employed to im-
prove the fit.

The above reasons, but also the widespread use of
dwell-time distributions (Colquhoun & Hawkes, 1995)
led to the desire of a multichannel fit of dwell-time dis-
tributions. The requirement of computer time can be re-
duced if a lower degree of sophistication is accepted.

The price that has to be paid for higher speed is as
follows: Firstly, the analysis of one-dimensional dwell-
time distributions ignores the information comprised

20 R. Blunck et al.: Multichannel Dwell-Time Analysis



in internal correlation (Fredkin, Montal & Rice, 1985).
This can be obtained from joint distributions of apparent
open and closed times, which describe the dependence
of an observed dwell-time in state B on the preceding
time in state A (Colquhoun & Hawkes, 1987; Blatz
& Magleby, 1989; Weiss & Magleby, 1989; Magleby &
Weiss 1990a,b; Colquhoun et al., 1996; Rothberg, Bello
& Magleby, 1997). Magleby and Song (1992) have
shown that Markov models which led to the same
maximum likelihood on the basis of one-dimensional
dwell-time distributions could clearly be distinguished
by means of two-dimensional dwell-time distributions.
This reduces the class of indistinguishable models, even
though it has to be kept in mind that already simple
models may not be distinguished by means of their ki-
netics (Kienker, 1989). The two-dimensional presenta-
tion is also useful to check the reversibility of the un-
derlying process (Song & Magleby, 1994).

Secondly, more serious is the neglect of the missed-
events problem (Roux & Sauve´ 1985; Blatz & Magleby,
1986; Yeo et al., 1988; Ball & Sansom, 1989; Hawkes et
al., 1990, 1992; Colquhoun et al., 1996). This may be
regarded as a major disadvantage because a retrospective
correction as provided for single-channel records
(Crouzy & Sigworth 1990; Draber & Schultze, 1994) is
not available for multichannel multistate records.

The restriction of the fitting routine to one-
dimensional dwell-time distributions does not necessar-
ily lead to a loss of information if the experiments have
produced some single-channel records. They can be
used for the construction of two-dimensional dwell-time
distributions (Magleby & Weiss, 1990a,b; Magleby &
Song, 1992; Colquhoun et al., 1996), from which the
model for the subsequent fitting of the multichannel one-
dimensional dwell-time distributions can be obtained.

Missed-events corrections could be included by us-
ing the survivor function R (Ball & Sansom, 1989;
Hawkes et al., 1990, 1992; Colquhoun et al., 1996).
However, it is questionable whether the gain of accuracy
is worth the considerable loss of speed. Firstly, as stated
by Magleby and Weiss (1990a) ‘‘the matrix methods
disregard the effects of noise and make unrealistic (ide-
alized) assumptions about the effects of filtering.’’ Fil-
tering (memory of the detector: Draber & Schultze,
1994) and noise (Magleby & Weiss 1990a,b) may have
effects that exceed that of a detector with constant dead-
time (Colquhoun & Hawkes 1990). Thus, the inclusion
of the survivor function does not account for all aspects
of the missed-events problem. Secondly, there is the op-
tion to investigate selected records with more sophisti-
cated methods after a rough picture has been obtained
from fitting all data. Because of the restricted number,
the best of all available methods can be used. Thirdly,
using simulations, Magleby and Weiss (1990a) and
Colquhoun et al. (1996) have shown that missed events

do not add additional time constants (phantom exponen-
tials: Blatz & Magleby, 1986; Yeo et al. 1988) if that part
of the dwell-time histogram witht < 3 dead timestd is
omitted. This is mainly the first (which is increasing
because of missed events) part of the dwell-time distri-
butions (McManus & Magleby, 1989; Colquhoun et al.,
1996). The effects of missed events can be handled by
an asymptotic form of the exact equations including the
survivor function in the range of 3td < t < 20 td

(Colquhoun et al., 1996). Fourthly, there is hope (Mc-
Manus & Magleby, 1989) that the error by ignoring
missed events results in a parallel shift by apparent rate
constants obtained under the influence of different
agents. Thus, the effect of an agent can still be charac-
terized.

Because only an incomplete missed-events correc-
tion could be incorporated into the analysis of pre-
averaged data (dwell-time distributions), researchers
may look for a dual strategy for fitting the data: A fast
and simple method for the analysis of all data and a slow
and sophisticated analysis (e.g., the direct fit of the time
series, Albertsen and Hansen, 1994; Klein et al., 1997)
for selected records in order to check and/or supplement
the rough data of the first run.

For the first run, a method is suggested here which
is a modification of that of Kijima and Kijima (1987b),
which was based on the assumption of identical chan-
nels. The new approach is based on a ‘‘macrochannel’’
presentation (Colquhoun & Hawkes 1977, 1990), and it
makes use of a target fit. The search routine in a target-
fit optimizes those parameters which are the ‘‘target’’ of
the analysis: here, the rate constants of the transitions in
a Markov model. The target fit has several advantages
over the widely used fit with time constants (Colquhoun
& Sigworth, 1983). At first, the calculation of the rate
constants from the set of time constants and amplitude
factors is very complicated even though the situation is
improved by the algorithms suggested by Jackson
(1997). Other benefits of this approach are:

– the application to ensembles with nonidentical
channels including sublevels;

– global fitting of the dwell-time distributions for all
levels in a multichannel record with the same data set;

– global fitting of different experiments: the inves-
tigation of the effects of an agent on a certain rate-
constant gets more powerful when all rate-constants be-
sides the influenced ones are kept equal in all data sets;

– the simpler inclusion of constraints, e.g., a certain
coupling between rate constants as given in the case of
cooperativity (Draber et al., 1993; Kiss & Nagy, 1985;
McGeoch & McGeoch, 1994).

Even though it is recommended to check the results
of the first run by more sophisticated methods, in many
cases the results of the one-dimensional dwell-time
analysis can be used directly. Thus, it is investigated by
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means of simulations, whether the approach presented
here can yield results of sufficient quality.

Presenting an Ensemble of Channels by
one Macrochannel

The concept of a macrochannel for multichannel analysis
has been used already by Colquhoun and Hawkes (1977,
1990). The way from the single channel to the marco
channel is illustrated by means of Fig. 1 for an ensemble
of two identical channels with three states each, the open
stateO and two closed statesC andG in the following
configuration

C ↽⇀
kOC

kCO

O ↽⇀
kGC

kCG

G (1)

According to Fig. 1, the nomenclature (including addi-
tional models below) has to distinguish between four
different kinds of models:

O, A, C, G states of the single channel (O, A are
open,C, G are closed)

Uj original states of the marcochannel as
obtained by writing down all possible
combinations ofN individual single
channels

Rr kinetic states (kinetically different) of the
macrochannel as described by the
b-vector (vector of state occupancies)
whose Q components give the numbers of
involved single-channel states (1ø r ø
B)

R vector consisting of all statesRr

Rr
(m) statesRr belonging to one stateYm

R(m) vector consisting of the statesRr
(m)

The above symbolsR are also used for
the probability of being in stateRr

Ym conductance states (aggregated states),
which can be distinguished by the
measured macrochannel currents (1ø m
ø M). All statesRr which lead to the
same conductance (same number of open
channels) form one stateYm.

with
Q number of states in the single channel

model(s) if identical channels are
considered, otherwiseQi has to be used in
order to account for different channel
typesi

N number of single channels
QM number of states in the Markov-model at

the left-hand side of Fig. 1
B number ofb-vectors (vectors of state

occupancies)

Bm number ofb-vectors related to the macro
(conductance) stateYm

M number of macro (conductance) statesYm

bi
(r) ith component of theb-vector of stateRr

(Eqs. 3,4)
The rate constants are
kij for the single channel (1ø i,j ø Q)
krs for the macrochannel (1ø r,s ø B).

The Rate Equations

For the change of the probability of being in a kinetic
stateRr (which is also calledRr), the following rate equa-
tion holds

d

dt
Rr = −(

s=1
sÞr

B

krsRr + (
s=1
sÞr

B

ksrRs = krr Rr + (
s=1
sÞr

B

ksrRs (2)

The form of the rate Eq. 2 is obvious, because the con-
cept of single-channel analysis can be applied to the
statesRr of the macrochannel (Fig. 1, middle).

The relationship between the marcochannel rate
constantskrs and the single-channel rate-constantskij can
be obtained from a comparison of the original model on
the left-hand side of Fig. 1 and the kinetic model in the
middle. If there is a jump from stateRr to stateRs, we
call Rr a source state andRs a sink state. Those statesRs

which are eligible as sink states forRr can be found by
considering the relatedb-vectors (vectors of state occu-
pancies). The constraint that the number of channels has
to be constant leads to the demand that the vectorb(r) of
Rr has to have one channel more in statei (bi

(r) 4 bi
(s) +

Fig. 1. Different presentations of the marcochannel. On the left-hand
side are the states of the original model (2 channels of theC-O-G type
of Eq. 1). The models in the middle and on the right-hand side are
aggregated models. In the middle, the statesRr are represented by the
relatedb-vectors (vector of state occupancies). In the case of only one
open state, the numberm of Ym is equal to the last element in the
b-vector.
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1) and one less in state j than the vectorb(r) of Rr has.
Thus,

b~r! = b~s! + ei − ej (3)

with ei and ej having a ‘‘1’’ at position i or j, respec-
tively, and zeros otherwise. The termb + ei − ej is
explained by the following example

b~r! =F b1

b2 + 1

b3 − 1
G~r!

=Fb1

b2

b3

G~s!

+F0

1

0
G −F0

0

1
G (4)

In the above jump fromRr to Rs, the second element in
theb-vector, b2, is decreased by 1, and the third element
b3 is increased by 1. That means that one channel that
has been in the single-channel state 2 jumps into the
single-channel state 3.

The statesRr are aggregated Markov states. Ifbi
(r)

is greater than 1, each one of the channels in state i may
jump. Thus, the rate constant of the transition from state
Rr to Rs has to be multiplied bybi

(r)

krs = bi
~r! ? kij (5)

i and j have to be obtained from an inspection of the
original states as shown in Fig. 1 at the left-hand side.

A jump out ofRr into any stateRs occurs when one
of the single states i included inb(r) changes to a state
j Þ i. In order to include all possible jumps, a dou-
ble sum is obtained for the probability −krr of leaving
stateRr

−krr = (
s=1
sÞr

B

krs = (
i=1

Q

(
j=1
jÞi

Q

bi
~r! kij (6)

The elements in the main diagonal are the negative sum
of all other elements in the same row (Colquhoun &
Hawkes, 1977, 1987, 1995).

For the jumps intoRr it has to be considered that
b-vector of the source stateRs has to have one channel
more in statej and one less in statei, because a jump
from single-channel statej to single-channel statei has to
result in the configuration of the vector of state occupan-
ciesb(r) (similar to Eq. 4).

This leads to the necessity of extending the indices
of statesRr andRs (which now are the sink and source
states, respectively) by the relatedb-vectorsb(r) andb(s)

of Eq. 3. Using Eqs. 5 and 6 the single-channel rate
constants are introduced into Eq. 2.

d

dt
Rr,b~r! = −Rr,b~r!F(

i=1

Q

bi
~r! (

j=1
jÞi

Q

kijG

+ (
i=1

Q

(
j=1
jÞi

Q

(bj
~r! + 1) kjiRs,@bj

~r!+ej−ei#
(7)

In the last sum of Eq. 7,bj
(s) is replaced bybj

(r) + 1,
according to Eq. 3.

The Steady-state Probabilities of the Macrochannel

Rr(`), the steady-state probability of being in state
R(r,b(r)) is obtained fordR/dt4 0 in Eq. 7. A solution
of this equation forN identical channels is

Rr,` =
N!

)
i=1

Q

bi
~r!!

? )
i=1

Q

pi
~`!bi

~r!
(8)

For the derivation of this equation we have to consider
the probability of being in stateRr which is described by
the vectorb(r). The probability of a single channel to be
in statei is pi(`). As this state has to occurbi

(r) times, the
exponentbi

(r) is introduced. Now it has to be considered
how many combinations of theN channels would result
in bi

(r) channels in statei. The derivation is simple if we
start with an ensemble ofN channels which haveQ 4 N
states. Then, we consider the special stateRa which is
described by theb-vectorb(a) 4 (1,1,1. .1), i.e. allbi

(a) 4
1. There areN! permutations of theQ 4 N states to fill
the Q 4 N components of that vector.

In all otherb-vectors (vectors of state occupancies)
of this ensemble, the occupancies of the bins are not so
evenly distributed. Some of the ‘‘1’’s are taken out of
some bins (components) and collected in other bins. In
these bins with multiple occupancy, thebj

(r) channels of
equal statej can no longer be distinguished. Thus, the
number of permutations, which isN! in b(a), is decreased
by a factor ofbj

(r) !, and Eq. 8 is obtained. With other
words, the first factor in Eq. 8 gives the number of ki-
netically equivalent arrangements of theN channels lead-
ing to the same vectorb(r).

This consideration applies also to ensembles with
the number of statesQ that is smaller than the number of
statesN. In that case,N-Q components of an extended
b-vector are set to zero. As a consequence of the re-
duced number of occupied places in theb-vector, the
available places have to have multiple occupancies. This
leads tobi

(r) > 1, and the scenario is equal to that de-
scribed above.

In addition to the above considerations, the correct-
ness of Eq. 8 is tested in Appendix I by showing that it
is a solution of Eq. 7 fordR/dt4 0.

The Probability Density Functions (p.d.f.) of
Sojourns in the States of the Macrochannel

The matrix form of the rate equations of the example in
Fig. 1 is as follows
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d

dt3F
R1
R2
R3
G

FR4
R5
G

@R6#

4
T

= @R1R2R3 R4R5R6# ?3
?k11k12k13? k14k15k16
?k21k22k23? k24k25k26
?k31k32k33? k34k35k36

k41k42k43?k44k45? k46
k51k52k53?k54k55? k56

k61k62k63 k64k65?k66?
4 (9)

with krs obtained by Eq. 5.
The full equation is required for the determination of

steady-state concentrationsRr. In the case of identical
channels, the solution is given by Eq. 8.

For the p.d.f.ym(t) of the duration of sojourns in the
stateYm, the reduced equation of the absorbing system
(Kijima & Kijima, 1987a) is required. Jumps into the
stateRr must occur only from substratesRs if the jumps
do not change the conductance. Thus, these source states
have to belong to the same index m of the current state
Ym (right-hand side of Fig. 1). In Eq. 9, the aggregation
of the substratesRr belonging to one phenomenological
macrostateYm are indicated by the brackets on the left-
hand side or by overlining and underlining in the middle.

An inspection of the matrix multiplication shows
that in the reduced rate equations only thosekrs are in-
volved which are surrounded by boxes. Even though
jumps out ofYm may go to all sink states, they are also
included in the boxes. This is a consequence of the fact
that the number of jumps out of the level has to be equal
to the number of jumps into the level (Colquhoun &
Hawkes, 1995). Thus, the elements in the main diagonal
are the negative sum of all other elements in the same
row (Eq. 6).

krr = − (
s=0
sÞr

B

kij (10)

krr on the diagonal includes all these transitions out of
Rr. Thus, the whole behavior of the reduced rate equa-
tions can be described by the submatrices (Bm × Bm)
surrounded by boxes.

The eigenvaluesli
(m) of the submatricesKm related

to one stateYm (with the statesRr
(m)) are obtained from

the solutions of the reduced equation (boxes in Eq. 9) of
the absorbing system

li
~m! ~v~m,i!!T = ~v~m,i!!T ? K~m! (11)

The eigenvectorv(m,i) (1 ø i ø Bm, and the additional

first index m indicates the assignment of theBm eigen-
vectorsv(m,i) to the macrostateYm) consists of the com-
ponents

~v~m,i!!T = @v1
~m,i!, v2

~m,i!, v3
~m,i!, . . . . . . . .vBm

~m,i!# (12)

Because of the segmentation of the fullK-matrix into
submatrices (Eq. 9), theBm eigenvectorsv(m,i) are deter-
mined only by the (Bm × Bm) submatrices. The determi-
nation of the eigenvectorsv(m,i) only by the rate constants
krs belonging to this stateYm avoids interference with
eigenvectors of other macro-statesYm’.

The macrochannel consisting of the kinetic R-states
is an aggregated Markov model. Because of this, the
solution for single-channel p.d.f.s can be used (Kijima &
Kijima, 1987a). For this single-channel, the p.d.f. of the
closed state (superscript c)yJSh is

yJSh~t! = (
ieclosed

di
~c! e−li

~c!t (13)

di
~c! = 2S~c! S (

Ieclosed

pI~`! vI
~c,i! ~ (

Jeopen

kI,J!D2/ftr (14)

with JSh(just shut) indicating that the channel that has
closed at time zero and opens at timet. li 4 1/ti are the
eigenvalues of the reduced matrix K8related to the en-
semble of closed states as shown by the boxes in Eq. 9.
vi

(c,i) is the I-th component of the eigenvector of the
reduced matrixK8 of the closed state.S(c) is the scaling
factor. The probabilities are normalized by dividing by
ftr, the number of all transitions in the record divided by
the sampling time.

In contrast to the single-channel analysis, there is no
longer a distinction between open and closed states in the
analysis of the macrochannel. It is replaced by a distinc-
tion of the current statesYm (Fig. 1).

The channel jumps into the levelYm at t8 4 0 and
stays there until timet8 4 t. At t8 4 t it jumps out of the
level m. The p.d.f.ym(t) for the dwell-times inYm is:

ym~t! dt = (
i=1

Bm

di
~m! e−li

~m!t dt (15)

di
~m! = 2Sm(

reYm

Rr
~m! ~`! vr

~m,i! ? S(
reYm

(
s∉Ym

krsD2/ftr
~m! (16)

Ym comprises all statesRr belonging to onem-state
(submatrices in Eq. 9).Bm gives the number of the dif-
ferent kinetic states comprised in the aggregated state
Ym ? Rr(`) is the steady-state probability ofRr ? ftr

(m) is
the average transition frequency for the macrochannel.
Because of the macrochannel approach of Fig. 1, it can
be derived similar to that of the single-channel model
(Kijima & Kijima, 1987a)
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ftr
~m! = 2 (

reYm

Rr
~m! ~`! ? (

s∉Ym

kr,s ks,r (17)

The Scaling of the p.d.f.

The scaling factor of the p.d.f.s,Sm, is obtained from the
conditions of normalizing the eigenvectors of the re-
duced matrix. The probability of being in the macro-
channel levelYm is

pm =
Tm

T
(18)

with Tm being the overall dwell-time in levelYm andT
the overall duration of the experiment.Tm is obtained
from them-th p.d.f.

Tm = Sm*0

`

(
r=1

Bm

t di
~m! ? e−li

~m! t dt = Sm (
i=0

Bm di
~m!

li
~m!2

(19)

with Sm being the scaling factor.
ReplacingTm in Eq. 19 by Eq. 18 leads to

Sm =
pm ? T

(
i=1

Bm di
~m!

li
~m!2

(20)

Since the temporal resolution of the measured dwell-time
histograms is given by the sampling periodTs, Eq. 15 has
to be integrated over the range of one bin. Assuming that
dm is constant within one bin, the integration can be
replaced by multiplyingdm with Ts.

Sm =
pm ? T ? Ts

(
i=1

Bm di
~m!

li
~m!2

(21)

The probabilitypm of being in stateYm is the sum of the
probabilitiesRr(`) of being in one of the substatesRr

belonging toYm

Sm = Ts ? T ?

(
r=1

Bm

Rr
~m! ~`!

(
i=1

Bm di
(m)

li
(m)2

(22)

A Computer Program for a Target Fit of the
Multichannel p.d.f.s.

Because of the linearity of Markov processes, dwell-time
histograms obtained from an ideal detector (without lim-

ited resolution) have always to be fitted by a sum of
exponentials (Eq. 15). In the case of filtering, terms of
the form tn exp(t/t) are obtained. However, the expo-
nential terms are a good approximation if the p.d.f. starts
at t > three dead timestd (Colquhoun et al. 1996;
Magleby & Weiss, 1990a), but the evaluated time con-
stants may be biased. By means of the following simu-
lations it is investigated how serious this bias is.

An important difference between fitting strategies
lies in the parameters which are delivered. Usually, the
amplitude factorsdi and time constantsti 4 1/li are
obtained. However, the optimum ‘‘target’’ of the analy-
sis should be the set of rate constantskij . In simple cases,
some of them can be obtained from the inverse time
constants of the closed states (ti 4 1/Skij , Colquhoun &
Hawkes, 1995), but the relationships are highly compli-
cated in most cases (Jackson, 1997). In a target-fit, the
rate-constants are determined directly.

The program developed for the target fit of the
p.d.f.s of the macrochannel enables the fit of ensembles
of up to 11 to 3 identical single-channels with up to 2 to
5 states, respectively. These states may be ‘‘open’’,
‘‘sublevel’’ or ‘‘closed’’. So far, the program is re-
stricted to two classes of open states which are related to
two different conductances.

The program (flow diagram is shown in Fig.A1 in
Appendix II) starts with the specification of the single-
channel model. The user enters the number of all states
Q, the number of open states (Qop) and of sublevel states
(Qsub). There is the convention, that the first states are
open ones. In the middle are the sublevel states, and the
closed ones are the last ones.

After assigning the states, the computer has to know
from which single-channel state to which single-channel
state transitions may occur. For this purpose, the pro-
gram prepares aQ × Q matrix. The model is selected by
specifying the transitionskij in this matrix. This is done
by assigning nonzero numbers to the selected transitions.
Normally, the values of these numbers are less impor-
tant. However, since these numbers are used as starting
values of thekij in a subsequent fitting routine, the fitting
procedure runs better if these values are similar to those
known from other experiments or from a reasonable
guess.

For the creation of the B × B K-matrix of the mac-
rochannel, a two-dimensional array of states of the size
(Q + 1 + Qo) × B comprising allb(r)-vectors of the states
Rr has to be generated. An example of the array is given
in Table 1 for an ensemble of three 3O S C G F—
channels with the last three states being nonconducting.
Qo is the number of different single-channel conductance
levels. The firstQo components in the rows give the
numbers of channels in the different conductances states
(full conductance and subconductance in the example of
Table 1). Blocks of rows with equal (mop, msub)-entries
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are combined to give oneYm state. bm counts the indi-
vidualb-vectors (vectors of state occupancies) belonging
to oneYm. The last number bm in such a block isBm.
The other elements of the row are the components of the
relatedb-vector. r is the address of this row of the array.
It is also the index of the related stateRr .

For the generation of the array of Table 1, a counter
is employed. This counter does not use the decimal sys-
tem, but a system with the basis (N + 1). A b-vector is
a number(N+1)n in this (N + 1) system (the occupancies
of bi

(r) can be 0 toN) with Q digits. However, not all
numbers(N+1)n are validb-vectors.

The selection ofb-vectors and their assignment is
done as follows:bm is set to zero, and the counter starts
with (N+1)n 4 1 and continues to(N+1)n 4 (N + 1)Q

(actually it is stopped as soon as the last digit has reached
N + 1 (bQ

(rmax) 4 N + 1), because the subsequent num-
bers cannot be validb-vectors as the number of channels
would be greater thanN).

At each counting step, an if-statement asks whether
the sum of all digits isN

(
i=1

Q

bi
~r! = N? (23)

because the sum of the digits is the number of channels
in the ensemble, and this always has to beN.

If the answer is yes, the indicesmop and msub are
determined by adding the digits belonging to the open
states and to the substates, respectively. The element bm
in the third component of Table 1 is increased by one.
It is set back to one whenmsub or mop change.b1

(r), . .

bQ
(r) are filled with bi

(r) taken from the actual(N+1)n
number (which has fulfilled the condition of Eq. 23).
At the end of the counting procedure, the array is filled.

The construction of theB × B macrochannelK -
matrix (Eq. 9) starts with the empty matrix (B 4 number
of all Rr states). To find the entries of thes-th column
(elementskrs with r 4 1 toB andsÞ r), b(s) is compared
with all vectorsb(r,mop,msub) of possible source statesRr

in the array of states. Those vectorsb(r), which fulfill the
relationship of Eq. 3 lead to nonzero entries as given by
Eq. 5 and 6. Having finished the creation of the macro-
channel K-matrix, the steady-state concentrationsRr(`)
can be calculated by means of Eq. 8.

For the solution of the rate-equations of the reduced
system (Eqs. 7 and 11), the bookkeeping indicesmop and
msub are used to find the submatrices belonging to the
stateYm. The eigenvalues are calculated by a routine in
the package ‘‘Eispack’’ obtained from the internet.

The procedure described above is embedded in a
fitting routine which changes thekij until the difference
between the theoretical and the measured p.d.f.s reaches
a minimum. According to our experience with fitting
data of biological systems, the most successful nonlinear
fitting routine is the Simplex algorithm (Caceci & Cach-
eris, 1984; Press et al., 1987). The fitting routine is part
of our patch analysis program day.pas which is available
on request.

Test by Application to Simulated Data

To study the strength of the multichannel analysis, tests
with simulated data were performed. A time series of
simulated patch current (as described below) was gener-
ated from an ensemble of channels with known states
and known rate constants and superimposed by red noise
with SNR (signal-to-noise ratio)4 1 or SNR 4 25.
From these noisy records, the noise-free time series was
reconstructed by means of a 4th order Hinkley detector
(Schultze & Draber, 1993; Hansen et al., 1995). The
software of the Hinkley detector also provided book-
keeping of the transitions in order to create the ‘‘experi-
mental’’ dwell-time histogramsym(t) for each levelYm of
current.

In the case of multichannel simulations, the kinetic
states of a macrochannel (Fig. 1, middle) were used. The
rate constants were entered as rate constants of this mac-
rochannel according to Eqs. 5 and 6. The benefit of this
approach is the simple introduction of special effects like
channel interaction as illustrated below.

Simulations were done as follows. The program
started in level zero (all channels closed). Then, a ran-
dom generator delivered two numbers. The first one was
used to calculate the time of the next jump from the
source state to the sink state (continuous time). The
dwell-time distribution of the source stateRr is

Table 1. An example of the array of states for an ensemble of three
O-S-C-G-Fchannel withO 4 full conductance andS 4 subconduc-
tance

mop msub bm b1
(r) b2

(r) b3
(r) b4

(r) b5
(r) r dec

0 0 1 0 0 0 0 3 1 3
2 0 0 0 1 2 2 6
3 0 0 0 2 1 3 9
4 0 0 0 3 0 4 12
5 0 0 1 0 2 5 18
6 0 0 1 1 1 6 21
7 0 0 1 2 0 7 24
8 0 0 3 0 0 8 48

0 1 1 0 1 0 0 2 9 66
2 0 1 0 1 1 10 69
3 0 1 0 2 0 11 72
4 0 1 1 0 1 12 81
5 0 1 1 1 0 13 84
6 0 1 2 0 0 14 96

0 2 1 0 2 0 0 1 15 129
etc.

The columnr is the address of the row in the matrix K of Eq. 9. dec ist
the decimal value of the counter.
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yr~t! = 1 ? exp~−lr t! with −krr = lr = (
sÞr

krs (24)

s labels all possible sink states for a jump out of the
present stateRr . The amplitude factor ‘‘1’’ is used be-
cause the random numbers are equally distributed be-
tween 0 and 1. The first random numbern1 was used as
an entry of the ordinate of Eq. 24, and the related value
tj at the abscissa is taken as the time of the jump (Press
et al., 1987).

tj = −
1

(
rÞs

krs

ln~n1! (25)

Now, the second random numbern2 (equally distributed,
0 ø n2 ø 1) was used to give the aim (sink states) of the
jump. The interval between 0 and 1 was divided into
sectionskrs/lr (Eq. 24). That stateRs was selected in
whose sectionn2 happened to fall. After this jump, the
algorithm started again from this new state by generating
two new random numbers.

The effect of the anti-aliasing filter was introduced
as follows: The jump caused a response of the 4-pole
Bessel anti-aliasing filter which was taken out of a
memory where jump responses of the anti-aliasing filters
were stored. Thus, the series of jumps created by the
random generators resulted in a sum of delayed filter
responses

I~t! = (
j=1

W

Irs, j − Irs, j ~1 − h~t − tj!! (26)

with Irs,j being the step in current related to the jump
from stateRr before the jump to the stateRs after the
jump at timetj; tj is given in continuous time (Eq. 25),
and mostly does not coincide with the sampling points.
Then,h(t − tj) is obtained from interpolation of the stored
values ofh(t). The upper limit of the sum in Eq. 26 is
determined by the timetb that is required by (1− h(t)) to
decrease below one bit of the DA converter. Responses
of jumps which had occurred beforet − tb were ignored.

This procedure resulted in a much shorter computing
time for the calculation of a time series of 2,000,000
samples than a decision at every sampling point if and
where to jump. In addition, this program generated a
continuous Markov process, as natural channels do. This
automatically includes multiple jumps in a sampling pe-
riod Ts.

The generated time series was superimposed by
noise. White Gaussian noise was generated by a Box-
Muller algorithm (Press et al., 1987). Filtering in order
to obtain white, red or blue noise could be done by digital
filtering. In the simultaneous red noise (prefiltered by
the same filterh(t) as used in Eq. 26) was used. As

always the same time course of the noise was used in the
simulations, (variations occurred only in the time series
of the ‘‘channel’’), the whole time-series of noise was
stored in the computer. For composing a noisy patch-
clamp record, the freshly prepared channel time series
was added to the stored noise series with the same anti-
aliasing filter. The signal-to-noise ratio was defined by

SNR= SIo

sD2

(27)

The assumed sampling rate was 200 kHz, and the anti-
aliasing filter was a 4-pole Bessel filter with a corner
frequency of 50 kHz.

The first set of simulations was done with 1 to 8
identical channels with the following configuration (rate
constants in sec−1)

C
kOC = 100

←→
kCO = 50

O
kGO = 1000

←→
kOG = 500

G (28)

Fig. 2A shows a section from the time series of a 4-
channel simulation run with a signal-to-noise ratio
(SNR) of 1.

The time series were fed into the program which is
presented in the flow diagram of Fig. A1. Firstly, the
current levels of theYm were determined by positioning
horizontal lines in the original time series (fit by eye).
Then, these levels were used as starting values for a fit of
the amplitude histograms by a sum of Gaussian distribu-
tions. The variancess and the levels were used for the
settings of the jump detector. For the reconstruction of
the noise-free time series (smooth line Fig. 2A), a 4th-
order Hinkley detector (Hansen et al., 1995; Schultze &
Draber, 1993) was employed. The Hinkley detector pro-
gram also did bookkeeping of the recorded jumps and
created the histograms as shown in Fig. 2B–F for the 5
levels with none to four channels open.

Fitting of these dwell-time histograms with Eqs. 15
and 16 resulted in the smooth lines in Fig. 2B–F. The fit
seems to be quite good for level 0 to level 3. In the case
of level 4 (Fig. 2F) it has to be taken into account that the
numbers of events are quite low. Noninteger numbers
below 1 event result from presenting average numbers
per dwell-time unit. Numbers below one imply that
many bins were empty.

The crucial question is whether the fitting routine
can reveal the original rate constants which were used to
generate the simulated data. In order not to depend on
the statistical uncertainty of a single experiment, the
simulations were done 100 to 200 times. Even though
the same program was used for their generation, time
courses were different because of the involvement of the
two random generators. Histograms of the distributions
of the evaluated rate constants were obtained by plotting
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the number of simulations which led to a rate constant in
the bin fromkij to kij + Dkij (Dkij is indicated by the width
of the columns)vs. kij .

The results obtained from a model with 4 channels
of the configuration as given by Eq. 28 are shown in Fig.
3. The upper four histograms of the single-channel rate
constants (kij) were obtained with a SNR of 25, the lower
four with SNR4 1. SNR4 1 is a worst-case consid-
eration, as in our lab data sampled with 200 kHz and
filtered by a 50-kHz filter reached a SNR of 2 to 3
(Hansen et al., 1997).

In the case of SNR4 25 (nearly noise-free), the
multichannel analysis with 4 channels (Fig. 3A–D) gave
results which were of equal quality as those obtained for
one channel with SNR4 1 and SNR4 25 (histograms
not shown, because they were not different from those in
Fig. 3 A–D, but averaged values are given in Table 2).

However, the results get worse in the presence of

strong noise (Fig. 3E–H). Most of the ‘‘experiments’’
gave satisfactory results, but there were some failures as
indicated by the isolated ‘‘off peak’’ events in Fig. 3
E,F,G.

The increase of the channel number from 4 to 8
causes problems in the case of noisy data (Fig. 4). Fig-
ure 4A–D (SNR4 25) shows good results besides some
off-peak values with easily could be eliminated by a
visual inspection of the fitted p.d.f.s. However, in the
case of SNR4 1 the scatter is tremendous (Fig. 4E
to H).

This high scatter does not seem to be a failure of the
multichannel analysis of Eq. 15, but of the jump detec-
tion algorithms. This is illustrated in Fig. 5. Here the
rate constants were decreased by a factor of 5 (rate con-
stants in sec−1).

C
kOC = 20

←→
kCO = 10

O
kGO = 200

←→
kOG = 100

G (29)

Fig. 2. Section of the time series of aC-O-Gmodel with four channels.
(Fig. 1A) and fits of the dwell-time histograms of current level 0 (B) to
level 4 (F) with 4 channels by means of Eq. 15. The histograms are
represented on a logrithmic scale, but the ordinate gives the number of
events in a bin divided by the width of that bin. The length of the bins
increased exponentially witht in order to give an adequate scaling of
fast and slow components and in order to give nearly equal statistical
weight to fast and slow components in the error sum of the fitting
routine. For the simulations, the rate constants given in Eq. 28 were
used. Sampling rate was 200 kHz. 2? 106 data points in a time series
with ca.14,000 transitions. Anti-aliasing filter: 50 kHz. A sojourn in a
level is ended by a jump upwards or by a jump downwards. The smooth
lines present the fits on the basis of Eqs. 15 and 16.

Fig. 3. Histograms of the single-channel rate constants of aC-O-G
model (Eq. 28) resulting from fitting dwell-time distributions like those
in Fig. 2. The data were obtained from 100 simulations of a 4-channel
model with the rate-constants given in Eq. 28. (A) to (D): SNR4 25,
(E) to (G): SNR4 1 (noise filtered byh(t) of Eq. 26). The mean values
(in 1/msec) are the numbers at the abscissa in (A) to (D). The mean
values and the standard deviationss are also given in Table 2.
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To compensate for the reduction of the number of events,
the number of samples was increased to 107. In Fig. 5,
the results are much better than in the lower part of
Fig. 4.

The reason for the difference in fit quality of Fig. 4
and 5 gets obvious in Fig. 6. Here, the measured p.d.f.s.
are compared with those calculated on the basis of Eq. 15
from the original rate constants for the fits in Fig. 4 and
in Fig. 5. Since the smooth lines in Fig. 6 are not fits, but
the ‘‘true’’ curves, the difference between the smooth
lines and the data points is an indication of the failure of
the jump detection algorithm in the case of noisy data.

The temporal resolution of the Hinkley detector is
automatically adjusted to the SNR to keep the number of
false alarms below a level of 1 per 104 samples (Schultze
& Draber, 1993). Thus, the number of missed events
increases dramatically in the case of high noise. Figure 6
shows that the ‘‘slow’’ channel of Fig. 5 (Eq. 29) can be
detected with small errors, but that in the case of the
‘‘fast’’ system of Fig. 4 (Eq. 28), the dwell-time distri-
butions delivered by the detector are wrong. The number
of detected fast events is too low. In the case of the
nearly noise-free data of the upper half of Fig. 4, the
dwell-time distributions were okay (not shown) because
the noise-dependent temporal resolution was much bet-
ter. These data show again that it is noise which deter-
mines the temporal resolution of patch clamp recordings.

To compare the results of Figs. 3–5, the mean values
and the standard deviations of the histograms in Figs. 3
to 5 are displayed in Table 2. The upper line gives the
‘‘true’’ values as used for the simulation program.

Table 2 shows that the mean values of the histo-
grams are not so far away from the ‘‘true’’ values, even
in the case of the noisy 8-channel data of Fig. 4E–H.
Mostly the difference is 10 to 20%. However, even an
error of 50% may be accepted. This is still a ‘‘good’’

result according to our experience obtained from fitting
of biological systems.

The small deviations of the mean values in Table 2
(except row no. 6) indicates that the results can be im-
proved by using longer time series. This is illustrated for
the next model.

The performance of the fitting routine also depends
on the selected model. The analysis of an ensemble with
2 channels with the configuration (A andO have equal
conductance, rate constants in sec−1)

C
kOC = 1000

←→
kCO = 500

O
kAO = 50

←→
kOA = 30

A
kGA = 400

←→
kAG = 200

G (30)

did not give satisfactory results even with SNR4 25
(Fig. 7) when time series with 2? 106 data points are
used. Time series with 10? 106 data points (Fig. 8) gave
much better results. This becomes obvious in Table 3

Table 2. Comparison of the mean values (in sec−1) obtained from
fitting the 3-state models of Figs. 3 to 5

Rate constants/sec−1 kCO s kGO s kOC s kOG s

Nominal 50 1,000 100 500

ch SNR MS
1 25 2 40 5 992 51 88 13 507 26
1 1 2 36 5 930 53 79 12 446 26
4 25 2 43 7 990 60 88 2 501 20
4 1 2 28 12 841 130 55 16 441 17
8 25 2 40 24 972 157 83 52 508 53
8 1 2 61 87 815 1521 159 665 380 255

Nominal 10 200 20 100

8 1 10 8 5 187 38 15 11 96 10

ch 4 numbers of channels, SNR4 signal-to-noise ratio (Eq. 27), MS
4 106 samples.

Fig. 4. Histograms of the single-channel rate constants of aC-O-G
model obtained from 145 simulations of model with 8 identical chan-
nels as specified in Eq. 28. Sampling rate4 200 kHz, no. of data points
4 2 ? 106 with ca. 28,000 transitions. Anti-aliasing filter 50 kHz. (A)
to (D): SNR4 25, (E) to (G): SNR4 1. The mean values (in 1/msec)
are the numbers at the abscissa in (A) to (D). The mean values and the
standard deviationss are also given in Table 2.
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showing the mean values and the standard deviations of
the 4-state model fits.

Channel Interaction

In the introduction it was mentioned that a major benefit
of the macrochannel in Fig. 1 is the possible introduction
of special conditions. One of these is channel interac-
tion. This is demonstrated for a 2-state 4-channels example
with the rate constants given in the legend of Fig. 9.

Channel interaction is introduced by making the rate
constants of channel opening dependent on the number
m of open channels, e.g.

kij = kijO ~1 + c ? m! (31)

for index i belonging to stateYm and indexj to state
Ym+1 ? c is the interaction factor, which increases the
open probability if neighboring channels are open. This
is an arbitrary example in order to illustrate the method.
Iwasa et al. (1986) have found the opposite effect, a
decreasing of the opening rate constant when another
channel is already open.

With c 4 0.2, kCO 4 500 sec−1 andkOC 4 2,000
sec−1, Eq. 31 leads to the following transition matrix of
the C-O model (rate constants in 1,000 sec−1).

K =3
−2 2 0 0 0

2 −3.8 1.8 0 0

0 4 −5.4 1.4 0

0 0 6 −6.8 0.8

0 0 0 8 −8
4 (32)

Fig. 5. Histograms of the single-channel rate constants of aC-O-G
model obtained from 100 simulations of model with 8 identical chan-
nels as specified in Eq. 29. The SNR was 1 as in Fig. 4E to H.
However, in contrast to Fig. 4, the rate constants were divided by a
factor of 5. Sampling rate4 200 kHz, no. of simulations4 107 with
ca. 7,000 transitions. Anti-aliasing filter 50 kHz. The mean values (in
1/msec) and the standard deviationss are given in Table 2.

Fig. 6. Failure of the jump detector in noisy 8-channel recordings
(SNR4 1) as illustrated by the dwell-time distributions (seeFig. 2) of
the current level 2 for theC-O-G model with (A) the rate constants of
Fig. 4 (Eq. 28) and (B) with the slower rate constants of Fig 5 (Eq. 29).
The smooth lines give the ‘‘true’’ curve as calculated by means of Eq.
16 using the original rate-constants. The dots are the number of so-
journs determined by the Hinkley detector. The situation was similar
for the other levels, besides that the number of data points was very low
in level 8 and that the discrepancy was much smaller for level 0.

Fig. 7. Histograms of the single-channel rate constants obtained from
100 simulations of model with 2 identical 4-state channels (C-O-A-G
with O andA being open) as specified in Eq. 30. Sampling rate4 200
kHz, no. of data points4 2 ? 106 and ca. 58,000 transitions. Anti-
aliasing filter 50 kHz. SNR4 25. The mean values (in 1/msec) and the
standard deviationss are given in Table 2.
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Eq. 31 introduces channel interaction into the elements
above the diagonal in Eq. 32. The rate-constantk12 cor-
responds to the opening of one channel. Asb1

(1) is 4
(each one of the four closed channels can open), its value
is 4 kCO 4 2,000 sec−1 with m 4 0 in Eq. 31. The
strongest effect of channel interaction is found ink45 4
800 sec−1, even though it is the smallest of the opening
rate-constants (becauseb1

(4) 4 1) ? b1
(4) kCO is increased

to k45 4 b1
(4) kCO (1 + 3 ? 0.2) 4 800 sec−1, because m

in Eq. 31 is 3 (three channels open).
To show the convergence of the algorithmper se,

nearly noise-free simulations were done (SNR4 25).
145 simulated records with 2? 106 data points were sub-
ject to the fitting routine (without visual control). The
rate-equations (Eqs. 2, 15 and 16) could be solved by the
same software as used for the examples above. How-
ever, the calculation of the steady-state concentrations
Rr(`) required some extra thoughts. Whereas in the case
of channel interaction-free models, Eq. 8 could be used,

the data with channel interaction required the calculation
of the steady-state conditions by using the full matrix
equation withdR/dt4 0 (Eqs. 2 and 9).

The distribution of the resulting single-channel rate
constants and of the channel interaction factorc are
shown in Fig. 9. The bias of the mean values of the fitted
parameters is about 10% in the case of rate constants.
The mean value of the channel interaction factor gave the
best result with a bias of 0.1%.

We investigated what would happen if the above
data simulated with channel interaction were fitted by a
channel interaction-free model. For this purpose, the fit-
ting routine was not allowed to usec in Eq. 31 (c 4 0,
as in the simulations of the preceding section). Figure 10
shows a comparison of the fits with and without allowing
channel interaction. Only the upper three levels are
shown, because a deviation was not seen in the levels
zero and one channel open. For the level with zero chan-
nels open, a deviation would not be expected (m 4 0 in
Eq. 31). In the first level, the effect is still small.

Figure 10 shows that the failure of the model ignor-
ing channel interaction increases with the number of
open channels. The deviation is maximum when the
fourth channel goes in the open state (Fig. 9B).

Figures 9 and 10 demonstrate that the macrochannel
approach can be used to test for channel interaction.

Conclusions and Recommendations for Fitting
the Data

In the introduction the question was raised whether the
results of the simple fit of dwell-time histograms (with-
out corrections for missed events) can be used as final
results or whether their role is restricted to that of pro-
viding starting values for more sophisticated and more
time-consuming approaches. Figures 3 and 9 show good
results. In Figs. 4A–D,5, 7 and 8, at least the faster rate
constants around 1,000 sec−1 are obtained with reason-
able reliability.

However, the simulations also show the flaws of the
method. There are the complete failures in Fig. 4E–H,
and the broad distributions of the slow rate-constants in
other figures. The failures are of different origin. In the
case of Fig. 7, the fits could be improved (Fig. 8) by
increasing the length of the time series by a factor of 5.
This implies that the statistical significance of the time
series was not reached, and the application of more so-
phisticated methods would not help.

On the other hand, the improvement of the fits of
Fig. 4 E–F by slowing down the rate constants by a
factor of 5 (Fig. 5) is an indication that a missed-events
correction were necessary. The missed-events problem
is also the reason for the influence of noise illustrated by
the difference between the upper and lower half of Fig. 4.
As the integration time of the Hinkley detector (Schultze

Fig. 8. Histograms of the single-channel rate constants obtained from
100 simulations of a model with 2 identical 4-state channels (C-O-A-G
with O andA being open) as specified in Eq. 30. Conditions as in Fig.
7, but 107 data points in a time series. The mean values (in 1/msec) of
the distributions and the standard deviationss are given in Table 3.
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& Draber, 1993) is adjusted to the SNR, the dead time of
the detector is much longer in the lower part of Fig. 4.
The results here are similar to those of Colquhoun et al.
(1996) that the slower time constants suffered more than
the medium one from undetected interruptions of long
sojourns.

The question may be raised whether the quality of

the fits in Figs. 4, 5, 6 and 7 can be improved by using
a different fitting strategy. It may be assumed that the
bias is a fault of the least square fit (LS) which is known
to lead to biased estimates. In a recent investigation we
have replaced the least-square fit by a Maximum-
Likelihood (ML) estimator. The simulations have shown
that there is a better performance of the ML estimator if
the time constants are in the middle of the time window
(the range given by the anti-aliasing filter and the length
of the time series), but LS does better if the time con-
stants are at the edges of the time window. This is just
the region where the missed-events problem would come
into play.

To test the significance of the error sums, the de-

Table 3. Comparison of the mean values (in sec−1) obtained from fitting the 4-state model of Eq. 30 with two channels and
different numbers of data points (Figs. 7 and 8)

kij /sec−1 kCO s kOC s kOA s kAO s kAG s kAG s

ch SNR MS 1000 500 30 50 200 400

2 25 2 963 108 499 32 37 33 86 82 90 99 530 1062
2 25 10 972 51 488 14 47 28 98 68 155 79 503 530

ch 4 numbers of channels, SNR4 signal to noise ratio (Eq. 27), MS4 106 samples.

Fig. 9. Histograms of the rate constants and channel interaction factor
obtained from 145 simulations of a 2-state (C-O) model with 4 chan-
nels and with a channel interaction factor ofc 4 0.2 according to Eq.
31. The nominal values were:kCO 4 500 sec−1 kHz, kOC 4 2,000
sec−1. The mean values (in msec−1) of the distributions and the standard
deviationss are given in Table 3.

Fig. 10. Comparison of the fits of the dwell-time histograms (seeFig.
2) of the channel interaction model of Fig. 9 fitted by a channel inter-
action model (A), (C) and (E), and by a model without channel inter-
action (B), (D) and (F). Only the fits of level 4 (A,B), level 3 (C,D) and
level 2 (E,F) are shown.
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pendence of the fit quality on the error sums was inves-
tigated. The fits of the 8-channel ensemble in Fig. 5
gave really poor results, and thus the fitted values of the
kij were plottedvs. the error sum. It was expected that a
vertical line presenting an adequate maximum error sum
could be drawn which would separate the awful values
e.g., of kOC in Fig. 5A at 0.0 from those close to 0.1.
However, plottingkij vs.the error sum resulted in a rect-
angular cloud with no visible trend (shown forkCO and
kOC in Fig. 11). The interesting finding is that the den-
sity distribution of thekOC cloud was found to be sur-
prisingly similar to thekCO cloud (Fig. 11). This indi-
cates that the ratiokCO/kOC does not scatter. This ratio
gives the ratio of equilibrium ‘‘concentrations’’ ofO and
C, which was obviously well determined by the data, but
the curve-shape of the dwell-time histogram (related to
the temporal behavior) was not.

The problem for the researcher working on real data
is that only a handful of data are available and distribu-
tions like those shown here can usually not be obtained
from the measured data. Thus, the researcher does not
know how broad the distributions are, whether the results
of the fits are in the tail or in the center of the distribu-
tion, and whether there is a bias. However, this infor-
mation is necessary to determine whether a further analy-
sis with the more sophisticated methods mentioned in the
induction is necessary.

Help may come from the methods used for the con-
struction of the distributions as in Fig. 4. It is suggested
to take the mean values of the fitted rat-constants, use
them for simulations and create distributions like those in
Figs. 3, 4, 5, 7, 8 or 9 under the conditions of the ex-
periments (SNR, filter, length). Broad distributions
would indicate that the time series are probably too short
for a sufficient statistical significance. In that case, also
a more sophisticated method would not help. However,
double peaks of the fast rate constants (Draber & Sch-
ultze, 1994; Magleby & Weiss, 1990a) would indicate
that the temporal resolution is not good enough, in that
case refitting with a better method is recommended. The
same holds if a strong bias occurs, i.e., if the center of the

distributions does not coincide with the rate constants
used for the simulation. The shift of a medium time
constant to higher values as caused by missed interrup-
tions (Colquhoun et al., 1996) would be continued in the
simulated data, and thus can be detected.

Another way is to take those data sets that provided
rate constants that are close to the averaged values of the
whole experiment and subject them to one of the more
sophisticated approaches mentioned in the introduction.
Then it has to be determined whether both approaches
lead to the same results.

We are grateful to Mrs. Maike Keunecke and Mr. Dirk Kukulenz for
stimulating discussions and to Prof. Dr. O. Pongs, Hamburg, for useful
hints.
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Appendix I

STEADY STATE CONCENTRATIONS Rr(`) OF

THE MACROCHANNEL

Introducing Eq. 8 into Eq. 7 leads to
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The last quotient in Eq. A1 accounts for the fact that there is onej-state
more inRs than inRr as given byb(s) 4 b(r) + ej − ei and one less in
statei.
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The last term in Eq. A2 is∑kij because of microreversibility∑j kij pi (`)
4 ∑j kji pj (`) (Cohquhoun & Hawkes, 1987). Thus, Eq. A2 is zero,
and Eq. 8 gives the steady-state solution of Eq. 7.

Appendix 2

Fig. A1 shows the block diagram of the program used for the evaluation
of the simulated time series.

Fig. A1. Block diagram of the fit program; ‘‘levels ands’’: the cur-
rent-levels and the variance of the noise are determined by two meth-
ods: (i) Fit-by-eye: horizontal lines are adjusted in the original time-
series, the noise is calculated from the deviations of the data-points.
(ii) Amplitude histograms: The levels and the noise are obtained from
a simplex-fit of the amplitude histograms with a sum of Gaussian
distributions. Level ands are required by the Hinkley detector to
reconstruct the time series. ‘‘enter model’’: the number of states, the
configuration of the single-channel model, and the number of channels
have to be entered. The possible transitions of the single-channel
model are communicated to the computer by entering nonzero esti-
mates for the relatedkij ; ‘‘find transitions’’: the single-channel model
and theb-vectors are inspected in order to find the transitions in the
K-matrix; ‘‘ x2 error’’: the error is calculated as (p.d.f− data)2/ data;
‘‘changekij by simplex’’: A simplex algorithm is employed to find the
optimum set ofkij .
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